BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15690725)

  • 1. Comparisons of lesion detectability in ultrasound images acquired using time-shift compensation and spatial compounding.
    Lacefield JC; Pilkington WC; Waag RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Dec; 51(12):1649-59. PubMed ID: 15690725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular ultrasound compounding by designed matrix weighting.
    Bashford GR; Morse JL
    IEEE Trans Med Imaging; 2006 Jun; 25(6):732-41. PubMed ID: 16768238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of ultrasound synthetic aperture imaging using bidirectional pixel-based focusing: preliminary phantom and in vivo breast study.
    Kim C; Yoon C; Park JH; Lee Y; Kim WH; Chang JM; Choi BI; Song TK; Yoo YM
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2716-24. PubMed ID: 23686939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive imaging and spatial compounding in the presence of aberration.
    Dahl JJ; Guenther DA; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1131-44. PubMed ID: 16212252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative three-dimensional elasticity imaging from quasi-static deformation: a phantom study.
    Richards MS; Barbone PE; Oberai AA
    Phys Med Biol; 2009 Feb; 54(3):757-79. PubMed ID: 19131669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of conventional, compounding, computer enhancement, and compounding with computer enhancement in ultrasound imaging of the breast.
    Barr RG; Maldonado RL; Georgian-Smith D
    Ultrasound Q; 2009 Sep; 25(3):129-34. PubMed ID: 19730052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Compounding Technique to Obtain Rotation Elastogram: A Feasibility Study.
    Kothawala A; Chandramoorthi S; Reddy NRK; Thittai AK
    Ultrasound Med Biol; 2017 Jun; 43(6):1290-1301. PubMed ID: 28433440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise reduction using spatial-angular compounding for elastography.
    Techavipoo U; Chen Q; Varghese T; Zagzebski JA; Madsen EL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):510-20. PubMed ID: 15217229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic computed tomography reconstruction of the attenuation coefficient using a linear array.
    Huang SW; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2011-22. PubMed ID: 16422413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole breast lesion detection using naive bayes classifier for portable ultrasound.
    Yang MC; Huang CS; Chen JH; Chang RF
    Ultrasound Med Biol; 2012 Nov; 38(11):1870-80. PubMed ID: 22975038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies.
    Jaeger M; Preisser S; Kitz M; Ferrara D; Senegas S; Schweizer D; Frenz M
    Phys Med Biol; 2011 Sep; 56(18):5889-901. PubMed ID: 21852726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to optimize breast ultrasound.
    Athanasiou A; Tardivon A; Ollivier L; Thibault F; El Khoury C; Neuenschwander S
    Eur J Radiol; 2009 Jan; 69(1):6-13. PubMed ID: 18818037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of breast microcalcifications using a strain-compounding technique with ultrasound speckle factor imaging.
    Liao YY; Li CH; Tsui PH; Chang CC; Kuo WH; Chang KJ; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):955-65. PubMed ID: 24859659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-assisted assessment of ultrasound real-time elastography: initial experience in 145 breast lesions.
    Zhang X; Xiao Y; Zeng J; Qiu W; Qian M; Wang C; Zheng R; Zheng H
    Eur J Radiol; 2014 Jan; 83(1):e1-7. PubMed ID: 24148563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing different ultrasound imaging methods for breast cancer detection.
    Ozmen N; Dapp R; Zapf M; Gemmeke H; Ruiter NV; van Dongen KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):637-46. PubMed ID: 25881342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional reconstruction of fine vascularity in ultrasound breast imaging using contrast-enhanced spatial compounding: in vitro analyses.
    Hansen C; Hüttebräuker N; Wilkening W; Ermert H
    Acad Radiol; 2008 Sep; 15(9):1155-64. PubMed ID: 18692757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of ultrasound tomography for breast imaging: technical assessment.
    Duric N; Littrup P; Babkin A; Chambers D; Azevedo S; Pevzner R; Tokarev M; Holsapple E; Rama O; Duncan R
    Med Phys; 2005 May; 32(5):1375-86. PubMed ID: 15984689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonrigid registration of 3-D free-hand ultrasound images of the breast.
    Xiao G; Brady JM; Noble JA; Burcher M; English R
    IEEE Trans Med Imaging; 2002 Apr; 21(4):405-12. PubMed ID: 12022628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of ultrasonic focus aberration and correction through human tissue.
    Tabei M; Mast TD; Waag RC
    J Acoust Soc Am; 2003 Feb; 113(2):1166-76. PubMed ID: 12597210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic frame pairing in real-time freehand elastography.
    Xia R; Tao G; Thittai AK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):979-85. PubMed ID: 24859661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.