These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 15691329)
1. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles. Possible role in rescuing cellular energy homeostasis. ter Veld F; Jeneson JA; Nicolay K FEBS J; 2005 Feb; 272(4):956-65. PubMed ID: 15691329 [TBL] [Abstract][Full Text] [Related]
2. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs. Gueguen N; Lefaucheur L; Fillaut M; Vincent A; Herpin P Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):287-97. PubMed ID: 15649776 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice. Bruton JD; Dahlstedt AJ; Abbate F; Westerblad H J Physiol; 2003 Oct; 552(Pt 2):393-402. PubMed ID: 14561823 [TBL] [Abstract][Full Text] [Related]
5. From energy store to energy flux: a study in creatine kinase-deficient fast skeletal muscle. Kaasik A; Veksler V; Boehm E; Novotova M; Ventura-Clapier R FASEB J; 2003 Apr; 17(6):708-10. PubMed ID: 12586739 [TBL] [Abstract][Full Text] [Related]
6. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation. Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789 [TBL] [Abstract][Full Text] [Related]
7. Murine muscles deficient in creatine kinase tolerate repeated series of high-intensity contractions. Gorselink M; Drost MR; van der Vusse GJ Pflugers Arch; 2001 Nov; 443(2):274-9. PubMed ID: 11713654 [TBL] [Abstract][Full Text] [Related]
9. Developmental changes in regulation of mitochondrial respiration by ADP and creatine in rat heart in vivo. Tiivel T; Kadaya L; Kuznetsov A; Käämbre T; Peet N; Sikk P; Braun U; Ventura-Clapier R; Saks V; Seppet EK Mol Cell Biochem; 2000 May; 208(1-2):119-28. PubMed ID: 10939635 [TBL] [Abstract][Full Text] [Related]
10. Creatine kinase knockout mice show left ventricular hypertrophy and dilatation, but unaltered remodeling post-myocardial infarction. Nahrendorf M; Spindler M; Hu K; Bauer L; Ritter O; Nordbeck P; Quaschning T; Hiller KH; Wallis J; Ertl G; Bauer WR; Neubauer S Cardiovasc Res; 2005 Feb; 65(2):419-27. PubMed ID: 15639481 [TBL] [Abstract][Full Text] [Related]
11. Characterization of creatine kinase isoforms in herring (Clupea harengus) skeletal muscle. Grzyb K; Skorkowski EF Comp Biochem Physiol B Biochem Mol Biol; 2005 Apr; 140(4):629-34. PubMed ID: 15763518 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial creatine kinase isoform expression does not correlate with its mode of action. Anflous K; Veksler V; Mateo P; Samson F; Saks V; Ventura-Clapier R Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):73-8. PubMed ID: 9078245 [TBL] [Abstract][Full Text] [Related]
13. Similar mitochondrial activation kinetics in wild-type and creatine kinase-deficient fast-twitch muscle indicate significant Pi control of respiration. Jeneson JA; ter Veld F; Schmitz JP; Meyer RA; Hilbers PA; Nicolay K Am J Physiol Regul Integr Comp Physiol; 2011 Jun; 300(6):R1316-25. PubMed ID: 21451138 [TBL] [Abstract][Full Text] [Related]
14. [A comparative study of the role of creatine phosphokinase isoenzymes in energy metabolism of skeletal and heart muscle]. Saks VA; Seppet EK; Liulina NV Biokhimiia; 1977 Apr; 42(4):579-88. PubMed ID: 870086 [TBL] [Abstract][Full Text] [Related]
15. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms. in 't Zandt HJ; de Groof AJ; Renema WK; Oerlemans FT; Klomp DW; Wieringa B; Heerschap A J Physiol; 2003 May; 548(Pt 3):847-58. PubMed ID: 12640020 [TBL] [Abstract][Full Text] [Related]
16. Muscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function. Veksler VI; Kuznetsov AV; Anflous K; Mateo P; van Deursen J; Wieringa B; Ventura-Clapier R J Biol Chem; 1995 Aug; 270(34):19921-9. PubMed ID: 7650007 [TBL] [Abstract][Full Text] [Related]
17. Comparison of kinetic constants of creatine kinase isoforms. Matsushima K; Uda K; Ishida K; Kokufuta C; Iwasaki N; Suzuki T Int J Biol Macromol; 2006 Mar; 38(2):83-8. PubMed ID: 16451808 [TBL] [Abstract][Full Text] [Related]
18. Glycolysis supports calcium uptake by the sarcoplasmic reticulum in skinned ventricular fibres of mice deficient in mitochondrial and cytosolic creatine kinase. Boehm E; Ventura-Clapier R; Mateo P; Lechène P; Veksler V J Mol Cell Cardiol; 2000 Jun; 32(6):891-902. PubMed ID: 10888244 [TBL] [Abstract][Full Text] [Related]
19. Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts. Wilding JR; Joubert F; de Araujo C; Fortin D; Novotova M; Veksler V; Ventura-Clapier R J Physiol; 2006 Aug; 575(Pt 1):191-200. PubMed ID: 16740607 [TBL] [Abstract][Full Text] [Related]
20. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils]. Saks VA; Lipina NV; Liulina IV; Chernousova GB; Fetter R; Smirnov VI; Chazov EI Biokhimiia; 1976 Aug; 41(8):1460-70. PubMed ID: 1030648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]