BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

629 related articles for article (PubMed ID: 15691745)

  • 1. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
    Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway.
    Harhangi HR; Akhmanova AS; Emmens R; van der Drift C; de Laat WT; van Dijken JP; Jetten MS; Pronk JT; Op den Camp HJ
    Arch Microbiol; 2003 Aug; 180(2):134-41. PubMed ID: 12811467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Zaldivar J; Borges A; Johansson B; Smits HP; Villas-Bôas SG; Nielsen J; Olsson L
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):436-42. PubMed ID: 12172606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.
    Bellissimi E; van Dijken JP; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2009 May; 9(3):358-64. PubMed ID: 19416101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    Kuyper M; Harhangi HR; Stave AK; Winkler AA; Jetten MS; de Laat WT; den Ridder JJ; Op den Camp HJ; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2003 Oct; 4(1):69-78. PubMed ID: 14554198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain.
    Kuyper M; Toirkens MJ; Diderich JA; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Jul; 5(10):925-34. PubMed ID: 15949975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation.
    Tanino T; Hotta A; Ito T; Ishii J; Yamada R; Hasunuma T; Ogino C; Ohmura N; Ohshima T; Kondo A
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1215-21. PubMed ID: 20853104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro.
    Ha SJ; Kim SR; Choi JH; Park MS; Jin YS
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):77-84. PubMed ID: 21655987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae.
    Träff-Bjerre KL; Jeppsson M; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2004 Jan; 21(2):141-50. PubMed ID: 14755639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001.
    Johansson B; Hahn-Hägerdal B
    FEMS Yeast Res; 2002 Aug; 2(3):277-82. PubMed ID: 12702276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component.
    van Maris AJ; Winkler AA; Kuyper M; de Laat WT; van Dijken JP; Pronk JT
    Adv Biochem Eng Biotechnol; 2007; 108():179-204. PubMed ID: 17846724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile.
    Shen Y; Chen X; Peng B; Chen L; Hou J; Bao X
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):1079-91. PubMed ID: 23053078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.