These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15691956)

  • 1. A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of Lactobacillus reuteri in the murine gut.
    Walter J; Chagnaud P; Tannock GW; Loach DM; Dal Bello F; Jenkinson HF; Hammes WP; Hertel C
    Appl Environ Microbiol; 2005 Feb; 71(2):979-86. PubMed ID: 15691956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract.
    Walter J; Heng NC; Hammes WP; Loach DM; Tannock GW; Hertel C
    Appl Environ Microbiol; 2003 Apr; 69(4):2044-51. PubMed ID: 12676681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract.
    Walter J; Schwab C; Loach DM; Gänzle MG; Tannock GW
    Microbiology (Reading); 2008 Jan; 154(Pt 1):72-80. PubMed ID: 18174127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract.
    Walter J; Loach DM; Alqumber M; Rockel C; Hermann C; Pfitzenmaier M; Tannock GW
    Environ Microbiol; 2007 Jul; 9(7):1750-60. PubMed ID: 17564608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress.
    Vieira Dos Santos C; Cuiné S; Rouhier N; Rey P
    Plant Physiol; 2005 Jun; 138(2):909-22. PubMed ID: 15923321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine sulfoxide reductases and virulence of bacterial pathogens.
    Sasindran SJ; Saikolappan S; Dhandayuthapani S
    Future Microbiol; 2007 Dec; 2(6):619-30. PubMed ID: 18041903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression of commensal Lactobacillus johnsonii strain NCC533 during in vitro growth and in the murine gut.
    Denou E; Berger B; Barretto C; Panoff JM; Arigoni F; Brüssow H
    J Bacteriol; 2007 Nov; 189(22):8109-19. PubMed ID: 17827285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global transcriptional response of Lactobacillus reuteri to the sourdough environment.
    Hüfner E; Britton RA; Roos S; Jonsson H; Hertel C
    Syst Appl Microbiol; 2008 Oct; 31(5):323-38. PubMed ID: 18762399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic advantages provided by selenocysteine in methionine-S-sulfoxide reductases.
    Kim HY; Fomenko DE; Yoon YE; Gladyshev VN
    Biochemistry; 2006 Nov; 45(46):13697-704. PubMed ID: 17105189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont.
    Frese SA; Mackenzie DA; Peterson DA; Schmaltz R; Fangman T; Zhou Y; Zhang C; Benson AK; Cody LA; Mulholland F; Juge N; Walter J
    PLoS Genet; 2013; 9(12):e1004057. PubMed ID: 24385934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methionine sulfoxide reductases in prokaryotes.
    Ezraty B; Aussel L; Barras F
    Biochim Biophys Acta; 2005 Jan; 1703(2):221-9. PubMed ID: 15680230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An anaerobic bacterial MsrB model reveals catalytic mechanisms, advantages, and disadvantages provided by selenocysteine and cysteine in reduction of methionine-R-sulfoxide.
    Lee TH; Kim HY
    Arch Biochem Biophys; 2008 Oct; 478(2):175-80. PubMed ID: 18722338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli.
    Ezraty B; Grimaud R; El Hassouni M; Moinier D; Barras F
    EMBO J; 2004 Apr; 23(8):1868-77. PubMed ID: 15057280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducible gene expression in Lactobacillus reuteri LTH5531 during type II sourdough fermentation.
    Dal Bello F; Walter J; Roos S; Jonsson H; Hertel C
    Appl Environ Microbiol; 2005 Oct; 71(10):5873-8. PubMed ID: 16204499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phage display reveals 52 novel extracellular and transmembrane proteins from Lactobacillus reuteri DSM 20016(T).
    Wall T; Roos S; Jacobsson K; Rosander A; Jonsson H
    Microbiology (Reading); 2003 Dec; 149(Pt 12):3493-3505. PubMed ID: 14663082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression, purification, and preliminary X-ray crystallographic studies of methionine sulfoxide reductase B from Bacillus subtilis.
    Park AK; Shin YJ; Moon JH; Kim YK; Hwang KY; Chi YM
    J Microbiol Biotechnol; 2008 Jan; 18(1):59-62. PubMed ID: 18239417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of the novel LysM domain-containing surface protein Sep from Lactobacillus fermentum BR11 and its use as a peptide fusion partner in Lactobacillus and Lactococcus.
    Turner MS; Hafner LM; Walsh T; Giffard PM
    Appl Environ Microbiol; 2004 Jun; 70(6):3673-80. PubMed ID: 15184172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract.
    Krumbeck JA; Marsteller NL; Frese SA; Peterson DA; Ramer-Tait AE; Hutkins RW; Walter J
    Environ Microbiol; 2016 Jul; 18(7):2172-84. PubMed ID: 26530032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures.
    Fukushima E; Shinka Y; Fukui T; Atomi H; Imanaka T
    J Bacteriol; 2007 Oct; 189(19):7134-44. PubMed ID: 17660280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative first exon splicing regulates subcellular distribution of methionine sulfoxide reductases.
    Kim HY; Gladyshev VN
    BMC Mol Biol; 2006 Mar; 7():11. PubMed ID: 16542431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.