These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 15692048)

  • 41. Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state.
    Lascaris R; Bussemaker HJ; Boorsma A; Piper M; van der Spek H; Grivell L; Blom J
    Genome Biol; 2003; 4(1):R3. PubMed ID: 12537548
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcription-dependent DNA transactions in the mitochondrial genome of a yeast hypersuppressive petite mutant.
    Van Dyck E; Clayton DA
    Mol Cell Biol; 1998 May; 18(5):2976-85. PubMed ID: 9566917
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of the nuc1 null mutant for analysis of yeast mitochondrial nucleoids.
    Miyakawa I; Fujimura R; Kadowaki Y
    J Gen Appl Microbiol; 2008 Dec; 54(6):317-25. PubMed ID: 19164874
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Signal transduction. Signaling specificity in yeast.
    Elion EA; Qi M; Chen W
    Science; 2005 Feb; 307(5710):687-8. PubMed ID: 15692041
    [No Abstract]   [Full Text] [Related]  

  • 45. Accounting for strain-specific differences during RTG target gene regulation in Saccharomyces cerevisiae.
    Dilova I; Powers T
    FEMS Yeast Res; 2006 Jan; 6(1):112-9. PubMed ID: 16423076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway.
    Chen EJ; Kaiser CA
    J Cell Biol; 2003 Apr; 161(2):333-47. PubMed ID: 12719473
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The activation specificities of wild-type and mutant Gcn4p in vivo can be different from the DNA binding specificities of the corresponding bZip peptides in vitro.
    Suckow M; Hollenberg CP
    J Mol Biol; 1998 Mar; 276(5):887-902. PubMed ID: 9566194
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SIT4 regulation of Mig1p-mediated catabolite repression in Saccharomyces cerevisiae.
    Jin C; Barrientos A; Epstein CB; Butow RA; Tzagoloff A
    FEBS Lett; 2007 Dec; 581(29):5658-63. PubMed ID: 18022394
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Overproduction of the Opi1 repressor inhibits transcriptional activation of structural genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae.
    Wagner C; Blank M; Strohmann B; Schüller HJ
    Yeast; 1999 Jul; 15(10A):843-54. PubMed ID: 10407264
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae.
    Ferreira Júnior JR; Spírek M; Liu Z; Butow RA
    Gene; 2005 Jul; 354():2-8. PubMed ID: 15967597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The conserved translocase Tim17 prevents mitochondrial DNA loss.
    Iacovino M; Granycome C; Sembongi H; Bokori-Brown M; Butow RA; Holt IJ; Bateman JM
    Hum Mol Genet; 2009 Jan; 18(1):65-74. PubMed ID: 18826960
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The retrograde response links metabolism with stress responses, chromatin-dependent gene activation, and genome stability in yeast aging.
    Jazwinski SM
    Gene; 2005 Jul; 354():22-7. PubMed ID: 15890475
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Attenuation of transcriptional and signaling responses limits viability of ρ(0)Saccharomyces cerevisiae during periods of glucose deprivation.
    Friis RMN; Schultz MC
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt A):2563-2575. PubMed ID: 27478089
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
    Conlan RS; Tzamarias D
    J Mol Biol; 2001 Jun; 309(5):1007-15. PubMed ID: 11399075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The transcriptional activator HAP4 is a high copy suppressor of an oxa1 yeast mutation.
    Hlavacek O; Bourens M; Salone V; Lachacinski N; Lemaire C; Dujardin G
    Gene; 2005 Jul; 354():53-7. PubMed ID: 15908145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Approaches to the study of Rox1 repression of the hypoxic genes in the yeast Saccharomyces cerevisiae.
    Zitomer RS; Limbach MP; Rodriguez-Torres AM; Balasubramanian B; Deckert J; Snow PM
    Methods; 1997 Mar; 11(3):279-88. PubMed ID: 9073571
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A systems approach to measuring the binding energy landscapes of transcription factors.
    Maerkl SJ; Quake SR
    Science; 2007 Jan; 315(5809):233-7. PubMed ID: 17218526
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitochondrial Retrograde Signaling Contributes to Metabolic Differentiation in Yeast Colonies.
    Plocek V; Fadrhonc K; Maršíková J; Váchová L; Pokorná A; Hlaváček O; Wilkinson D; Palková Z
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070491
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolutionary Transition of GAL Regulatory Circuit from Generalist to Specialist Function in Ascomycetes.
    Choudhury BI; Whiteway M
    Trends Microbiol; 2018 Aug; 26(8):692-702. PubMed ID: 29395731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.