These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15692323)

  • 1. Effects of short-term endurance training on aortic distensibility in young males.
    Kakiyama T; Sugawara J; Murakami H; Maeda S; Kuno S; Matsuda M
    Med Sci Sports Exerc; 2005 Feb; 37(2):267-71. PubMed ID: 15692323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of short-term endurance training on muscle deoxygenation trends using NIRS.
    Neary JP; McKenzie DC; Bhambhani YN
    Med Sci Sports Exerc; 2002 Nov; 34(11):1725-32. PubMed ID: 12439075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in anaerobic threshold as the result of endurance training and detraining.
    Ready AE; Quinney HA
    Med Sci Sports Exerc; 1982; 14(4):292-6. PubMed ID: 7132647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimising high-intensity treadmill training using the running speed at maximal O(2) uptake and the time for which this can be maintained.
    Smith TP; Coombes JS; Geraghty DP
    Eur J Appl Physiol; 2003 May; 89(3-4):337-43. PubMed ID: 12736843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of athletic strength and endurance exercise training in young humans on plasma endothelin-1 concentration and arterial distensibility.
    Otsuki T; Maeda S; Iemitsu M; Saito Y; Tanimura Y; Ajisaka R; Goto K; Miyauchi T
    Exp Biol Med (Maywood); 2006 Jun; 231(6):789-93. PubMed ID: 16741000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiovascular response to hypoxia after endurance training at altitude and sea level and after detraining.
    Katayama K; Sato Y; Morotome Y; Shima N; Ishida K; Mori S; Miyamura M
    J Appl Physiol (1985); 2000 Apr; 88(4):1221-7. PubMed ID: 10749811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of central arterial compliance on cerebrovascular hemodynamics: insights from endurance training intervention.
    Tomoto T; Sugawara J; Nogami Y; Aonuma K; Maeda S
    J Appl Physiol (1985); 2015 Sep; 119(5):445-51. PubMed ID: 26139214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of short-term endurance exercise training on vascular function in young males.
    Currie KD; Thomas SG; Goodman JM
    Eur J Appl Physiol; 2009 Sep; 107(2):211-8. PubMed ID: 19554346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of concurrent endurance and strength training on running economy and .VO(2) kinetics.
    Millet GP; Jaouen B; Borrani F; Candau R
    Med Sci Sports Exerc; 2002 Aug; 34(8):1351-9. PubMed ID: 12165692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time course of changes in endurance capacity: a 1-yr training study.
    Scharhag-Rosenberger F; Meyer T; Walitzek S; Kindermann W
    Med Sci Sports Exerc; 2009 May; 41(5):1130-7. PubMed ID: 19346973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of short term detraining and retraining on physical fitness in elite soccer players.
    Joo CH
    PLoS One; 2018; 13(5):e0196212. PubMed ID: 29746505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of endurance training on the size and blood flow of the arterial conductance vessels in humans.
    Miyachi M; Iemitsu M; Okutsu M; Onodera S
    Acta Physiol Scand; 1998 May; 163(1):13-6. PubMed ID: 9648618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining.
    Wibom R; Hultman E; Johansson M; Matherei K; Constantin-Teodosiu D; Schantz PG
    J Appl Physiol (1985); 1992 Nov; 73(5):2004-10. PubMed ID: 1474078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise training improves left ventricular contractile response to beta-adrenergic agonist.
    Spina RJ; Ogawa T; Coggan AR; Holloszy JO; Ehsani AA
    J Appl Physiol (1985); 1992 Jan; 72(1):307-11. PubMed ID: 1537731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromuscular adaptations during concurrent strength and endurance training versus strength training.
    Häkkinen K; Alen M; Kraemer WJ; Gorostiaga E; Izquierdo M; Rusko H; Mikkola J; Häkkinen A; Valkeinen H; Kaarakainen E; Romu S; Erola V; Ahtiainen J; Paavolainen L
    Eur J Appl Physiol; 2003 Mar; 89(1):42-52. PubMed ID: 12627304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of detraining on endurance capacity and metabolic changes during prolonged exhaustive exercise.
    Madsen K; Pedersen PK; Djurhuus MS; Klitgaard NA
    J Appl Physiol (1985); 1993 Oct; 75(4):1444-51. PubMed ID: 8282588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced heat loss responses induced by short-term endurance training in exercising women.
    Ichinose TK; Inoue Y; Hirata M; Shamsuddin AK; Kondo N
    Exp Physiol; 2009 Jan; 94(1):90-102. PubMed ID: 18945758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of training/detraining on submaximal exercise responses in humans.
    Moore RL; Thacker EM; Kelley GA; Musch TI; Sinoway LI; Foster VL; Dickinson AL
    J Appl Physiol (1985); 1987 Nov; 63(5):1719-24. PubMed ID: 3693207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of short- and long-term detraining on the metabolic response to endurance exercise.
    Petibois C; Déléris G
    Int J Sports Med; 2003 Jul; 24(5):320-5. PubMed ID: 12868041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endurance exercise training increases peripheral vascular response in human fingers.
    Katayama K; Shimoda M; Maeda J; Takemiya T
    Jpn J Physiol; 1998 Oct; 48(5):365-71. PubMed ID: 9852345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.