These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 15692840)
1. An interacting particle system modelling aggregation behavior: from individuals to populations. Morale D; Capasso V; Oelschläger K J Math Biol; 2005 Jan; 50(1):49-66. PubMed ID: 15692840 [TBL] [Abstract][Full Text] [Related]
2. Translating stochastic density-dependent individual behavior with sensory constraints to an Eulerian model of animal swarming. Grünbaum D J Math Biol; 1994; 33(2):139-61. PubMed ID: 7868990 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of aggregate formation in social insects. Nicolis SC Bull Math Biol; 2007 Oct; 69(7):2387-403. PubMed ID: 17554584 [TBL] [Abstract][Full Text] [Related]
4. Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Champagnat N; Ferrière R; Méléard S Theor Popul Biol; 2006 May; 69(3):297-321. PubMed ID: 16460772 [TBL] [Abstract][Full Text] [Related]
5. Self-organization of mobile populations in cyclic competition. Reichenbach T; Mobilia M; Frey E J Theor Biol; 2008 Sep; 254(2):368-83. PubMed ID: 18602648 [TBL] [Abstract][Full Text] [Related]
6. Coupled map lattice approximations for spatially explicit individual-based models of ecology. Brännström A; Sumpter DJ Bull Math Biol; 2005 Jul; 67(4):663-82. PubMed ID: 15893547 [TBL] [Abstract][Full Text] [Related]
7. Modeling warfare in social animals: a "chemical" approach. Santarlasci A; Martelloni G; Frizzi F; Santini G; Bagnoli F PLoS One; 2014; 9(11):e111310. PubMed ID: 25369269 [TBL] [Abstract][Full Text] [Related]
8. Modeling ant battles by means of a diffusion-limited Gillespie algorithm. Martelloni G; Santarlasci Alisa ; Bagnoli F; Santini G Theor Biol Forum; 2014; 107(1-2):57-76. PubMed ID: 25936213 [TBL] [Abstract][Full Text] [Related]
9. Structured population dynamics: continuous size and discontinuous stage structures. Buffoni G; Pasquali S J Math Biol; 2007 Apr; 54(4):555-95. PubMed ID: 17151883 [TBL] [Abstract][Full Text] [Related]
10. The intermediate dispersal principle in spatially explicit metapopulations. Casagrandi R; Gatto M J Theor Biol; 2006 Mar; 239(1):22-32. PubMed ID: 16154596 [TBL] [Abstract][Full Text] [Related]
11. Global stability with selection in integro-differential Lotka-Volterra systems modelling trait-structured populations. Pouchol C; Trélat E J Biol Dyn; 2018 Dec; 12(1):872-893. PubMed ID: 30353778 [TBL] [Abstract][Full Text] [Related]
12. Modeling and analysis of stochastic invasion processes. Lewis MA; Pacala S J Math Biol; 2000 Nov; 41(5):387-429. PubMed ID: 11151706 [TBL] [Abstract][Full Text] [Related]
13. The roles of the Moran effect and dispersal in synchronizing oscillating populations. Goldwyn EE; Hastings A J Theor Biol; 2011 Nov; 289():237-46. PubMed ID: 21903103 [TBL] [Abstract][Full Text] [Related]
14. Two-category model of task allocation with application to ant societies. Brandts WA; Longtin A; Trainor LE Bull Math Biol; 2001 Nov; 63(6):1125-61. PubMed ID: 11732179 [TBL] [Abstract][Full Text] [Related]
16. Kinetic theory of age-structured stochastic birth-death processes. Greenman CD; Chou T Phys Rev E; 2016 Jan; 93(1):012112. PubMed ID: 26871029 [TBL] [Abstract][Full Text] [Related]
17. Spatial point processes and moment dynamics in the life sciences: a parsimonious derivation and some extensions. Plank MJ; Law R Bull Math Biol; 2015 Apr; 77(4):586-613. PubMed ID: 25216969 [TBL] [Abstract][Full Text] [Related]
18. Stochastic models in population biology and their deterministic analogs. McKane AJ; Newman TJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041902. PubMed ID: 15600430 [TBL] [Abstract][Full Text] [Related]
19. Finding analytical approximations for discrete, stochastic, individual-based models of ecology. Gyllingberg L; Sumpter DJT; Brännström Å Math Biosci; 2023 Nov; 365():109084. PubMed ID: 37778619 [TBL] [Abstract][Full Text] [Related]
20. The stochastic modelling of kleptoparasitism using a Markov process. Broom M; Crowe ML; Fitzgerald MR; Rychtár J J Theor Biol; 2010 May; 264(2):266-72. PubMed ID: 20096290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]