These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15693297)

  • 1. [Effects of fatigue on the characteristics of cat gastrocnemius muscle contraction and elongation in response to changes of the controlled load].
    Buhaĭchenko LA
    Fiziol Zh (1994); 2004; 50(5):50-6. PubMed ID: 15693297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Fatigue-related changes in dynamic and static components of eccentric contraction of the gastrocnemius muscle in the narcotized cat].
    Buhaĭchenko LA
    Fiziol Zh (1994); 2004; 50(3):85-91. PubMed ID: 15320436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spreading of fatigue-related effects from active to inactive parts in the medial gastrocnemius muscle of the cat.
    Kostyukov AI; Kalezic I; Serenko SG; Ljubisavljevic M; Windhorst U; Johansson H
    Eur J Appl Physiol; 2002 Feb; 86(4):295-307. PubMed ID: 11990742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dynamics of efferent regulation of muscle contraction. Determination of transition processes: external load--muscle length].
    Kostiukov AI
    Neirofiziologiia; 1985; 17(3):334-43. PubMed ID: 4022182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Associations between force and fatigue in fast-twitch motor units of a cat hindlimb muscle.
    Laouris Y; Bevan L; Reinking RM; Stuart DG
    Can J Physiol Pharmacol; 2004; 82(8-9):577-88. PubMed ID: 15523515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Length changes of the cat soleus muscle under frequency-modulated distributed stimulation of efferents in isotony.
    Kostyukov AI; Korchak OE
    Neuroscience; 1998 Feb; 82(3):943-55. PubMed ID: 9483548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue-related depression of the feline monosynaptic gastrocnemius-soleus reflex.
    Kalezic I; Bugaychenko LA; Kostyukov AI; Pilyavskii AI; Ljubisavljevic M; Windhorst U; Johansson H
    J Physiol; 2004 Apr; 556(Pt 1):283-96. PubMed ID: 14645451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue effects on muscle excitability.
    Hortobágyi T; Tracy J; Hamilton G; Lambert J
    Int J Sports Med; 1996 Aug; 17(6):409-14. PubMed ID: 8884414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does the speed of shortening affect steady-state force depression in cat soleus muscle?
    Leonard TR; Herzog W
    J Biomech; 2005 Nov; 38(11):2190-7. PubMed ID: 16154405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interleaved, multisite electrical stimulation of cat sciatic nerve produces fatigue-resistant, ripple-free motor responses.
    McDonnall D; Clark GA; Normann RA
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):208-15. PubMed ID: 15218935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of shortening and velocity of shortening during repeated isotonic tetanic contractions in mammalian skeletal muscle.
    MacIntosh BR; Bryan SN
    Pflugers Arch; 2002 Mar; 443(5-6):804-12. PubMed ID: 11889579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle fatigue resistance during stimulated contractions is reduced in young male smokers.
    Morse CI; Wüst RC; Jones DA; de Haan A; Degens H
    Acta Physiol (Oxf); 2007 Oct; 191(2):123-9. PubMed ID: 17550408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the unfused tetanus course in fast motor units of the rat medial gastrocnemius muscle.
    Celichowski J; Pogrzebna M; Raikova RT
    Arch Ital Biol; 2005 Feb; 143(1):51-63. PubMed ID: 15844668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation analysis of interference EMG during fatiguing voluntary contractions. Part II--changes in amplitude and spectral characteristics.
    Dimitrov GV; Arabadzhiev TI; Hogrel JY; Dimitrova NA
    J Electromyogr Kinesiol; 2008 Feb; 18(1):35-43. PubMed ID: 16963280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central and peripheral contributions to fatigue after electrostimulation training.
    Gondin J; Guette M; Jubeau M; Ballay Y; Martin A
    Med Sci Sports Exerc; 2006 Jun; 38(6):1147-56. PubMed ID: 16775557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation analysis of interference EMG during fatiguing voluntary contractions. Part I: What do the intramuscular spike amplitude-frequency histograms reflect?
    Dimitrov GV; Arabadzhiev TI; Hogrel JY; Dimitrova NA
    J Electromyogr Kinesiol; 2008 Feb; 18(1):26-34. PubMed ID: 16963279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of nitric oxide on the efficiency of oxygen consumption by the working skeletal muscle in fatigue].
    Bohuslavs'kyĭ AIu; Dmytriieva AV; Sahach VF
    Fiziol Zh (1994); 2005; 51(1):33-42. PubMed ID: 15801198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of activation frequency on cellular signalling pathways during fatiguing contractions in rat skeletal muscle.
    Russ DW; Lovering RM
    Exp Physiol; 2006 Nov; 91(6):957-66. PubMed ID: 16857718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes of motor unit contractile output during repeated activity.
    Lochyński D; Celichowski J; Korman P; Raglewska P
    Acta Neurobiol Exp (Wars); 2007; 67(1):23-33. PubMed ID: 17474318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force recovery after activated shortening in whole skeletal muscle: transient and steady-state aspects of force depression.
    Corr DT; Herzog W
    J Appl Physiol (1985); 2005 Jul; 99(1):252-60. PubMed ID: 15746298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.