BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 15694342)

  • 21. The mitochondrial tyrosyl-tRNA synthetase of Podospora anserina is a bifunctional enzyme active in protein synthesis and RNA splicing.
    Kämper U; Kück U; Cherniack AD; Lambowitz AM
    Mol Cell Biol; 1992 Feb; 12(2):499-511. PubMed ID: 1531084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of Neurospora mitochondrial tyrosyl-tRNA synthetase in RNA splicing. A new method for purifying the protein and characterization of physical and enzymatic properties pertinent to splicing.
    Saldanha RJ; Patel SS; Surendran R; Lee JC; Lambowitz AM
    Biochemistry; 1995 Jan; 34(4):1275-87. PubMed ID: 7530051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof.
    Akins RA; Lambowitz AM
    Cell; 1987 Jul; 50(3):331-45. PubMed ID: 3607872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A tyrosyl-tRNA synthetase binds specifically to the group I intron catalytic core.
    Guo Q; Lambowitz AM
    Genes Dev; 1992 Aug; 6(8):1357-72. PubMed ID: 1379562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme.
    Mohr G; Caprara MG; Guo Q; Lambowitz AM
    Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of human mitochondrial tyrosyl-tRNA synthetase reveals common and idiosyncratic features.
    Bonnefond L; Frugier M; Touzé E; Lorber B; Florentz C; Giegé R; Sauter C; Rudinger-Thirion J
    Structure; 2007 Nov; 15(11):1505-16. PubMed ID: 17997975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics.
    Chadee AB; Bhaskaran H; Russell R
    J Mol Biol; 2010 Jan; 395(3):656-70. PubMed ID: 19913030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The neurospora CYT-18 protein suppresses defects in the phage T4 td intron by stabilizing the catalytically active structure of the intron core.
    Mohr G; Zhang A; Gianelos JA; Belfort M; Lambowitz AM
    Cell; 1992 May; 69(3):483-94. PubMed ID: 1533818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of a group I intron into a ribosomal RNA sequence promoted by a tyrosyl-tRNA synthetase.
    Mohr G; Lambowitz AM
    Nature; 1991 Nov; 354(6349):164-7. PubMed ID: 1658660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An essential residue in the flexible peptide linking the two idiosynchratic domains of bacterial tyrosyl-tRNA synthetases.
    Gaillard C; Bedouelle H
    Biochemistry; 2001 Jun; 40(24):7192-9. PubMed ID: 11401566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of a group I intron splicing intermediate.
    Adams PL; Stahley MR; Gill ML; Kosek AB; Wang J; Strobel SA
    RNA; 2004 Dec; 10(12):1867-87. PubMed ID: 15547134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural analyses on yeast tRNA(Tyr) and its complex with tyrosyl-tRNA synthetase by the use of hydroxyl radical 'footprinting'.
    Motoki I; Yosinari S; Watanabe K; Nishikawa K
    Nucleic Acids Symp Ser; 1991; (25):173-4. PubMed ID: 1842072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion.
    Kobayashi T; Nureki O; Ishitani R; Yaremchuk A; Tukalo M; Cusack S; Sakamoto K; Yokoyama S
    Nat Struct Biol; 2003 Jun; 10(6):425-32. PubMed ID: 12754495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and dynamics of the anticodon arm binding domain of Bacillus stearothermophilus Tyrosyl-tRNA synthetase.
    Guijarro JI; Pintar A; Prochnicka-Chalufour A; Guez V; Gilquin B; Bedouelle H; Delepierre M
    Structure; 2002 Mar; 10(3):311-7. PubMed ID: 12005430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward predicting self-splicing and protein-facilitated splicing of group I introns.
    Vicens Q; Paukstelis PJ; Westhof E; Lambowitz AM; Cech TR
    RNA; 2008 Oct; 14(10):2013-29. PubMed ID: 18768647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing.
    Mohr S; Stryker JM; Lambowitz AM
    Cell; 2002 Jun; 109(6):769-79. PubMed ID: 12086675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase.
    Wei Z; Xu Z; Liu X; Lo WS; Ye F; Lau CF; Wang F; Zhou JJ; Nangle LA; Yang XL; Zhang M; Schimmel P
    Nucleic Acids Res; 2016 Feb; 44(3):1247-55. PubMed ID: 26773056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural analysis of the Neurospora mitochondrial large rRNA intron and construction of a mini-intron that shows protein-dependent splicing.
    Guo QB; Akins RA; Garriga G; Lambowitz AM
    J Biol Chem; 1991 Jan; 266(3):1809-19. PubMed ID: 1824845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational protein design with a generalized Born solvent model: application to Asparaginyl-tRNA synthetase.
    Polydorides S; Amara N; Aubard C; Plateau P; Simonson T; Archontis G
    Proteins; 2011 Dec; 79(12):3448-68. PubMed ID: 21563215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Flexible peptide tether controls accessibility of a unique C-terminal RNA-binding domain in leucyl-tRNA synthetases.
    Hsu JL; Martinis SA
    J Mol Biol; 2008 Feb; 376(2):482-91. PubMed ID: 18155724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.