BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15694396)

  • 1. Involvement of ryanodine receptors in pacemaker Ca2+ oscillation in murine gastric ICC.
    Liu HN; Ohya S; Wang J; Imaizumi Y; Nakayama S
    Biochem Biophys Res Commun; 2005 Mar; 328(2):640-6. PubMed ID: 15694396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-contribution of IP3R and Ca2+ influx pathways to pacemaker Ca2+ activity in stomach ICC.
    Liu HN; Ohya S; Furuzono S; Wang J; Imaizumi Y; Nakayama S
    J Biol Rhythms; 2005 Feb; 20(1):15-26. PubMed ID: 15654067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement of ryanodine receptors for pacemaker Ca2+ activity in ICC and HEK293 cells.
    Aoyama M; Yamada A; Wang J; Ohya S; Furuzono S; Goto T; Hotta S; Ito Y; Matsubara T; Shimokata K; Chen SR; Imaizumi Y; Nakayama S
    J Cell Sci; 2004 Jun; 117(Pt 13):2813-25. PubMed ID: 15169838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RyR1-specific requirement for depolarization-induced Ca2+ sparks in urinary bladder smooth muscle.
    Fritz N; Morel JL; Jeyakumar LH; Fleischer S; Allen PD; Mironneau J; Macrez N
    J Cell Sci; 2007 Nov; 120(Pt 21):3784-91. PubMed ID: 17925380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of ryanodine receptors by 4-(2-aminopropyl)-3,5-dichloro-N,N-dimethylaniline (FLA 365) in canine pulmonary arterial smooth muscle cells.
    Ostrovskaya O; Goyal R; Osman N; McAllister CE; Pessah IN; Hume JR; Wilson SM
    J Pharmacol Exp Ther; 2007 Oct; 323(1):381-90. PubMed ID: 17640951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purinergic modulation of pacemaker Ca2+ activity in interstitial cells of Cajal.
    Furuzono S; Nakayama S; Imaizumi Y
    Neuropharmacology; 2005 Feb; 48(2):264-73. PubMed ID: 15695165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine.
    Lee HT; Hennig GW; Fleming NW; Keef KD; Spencer NJ; Ward SM; Sanders KM; Smith TK
    Gastroenterology; 2007 May; 132(5):1852-65. PubMed ID: 17484879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ.
    Hashitani H; Suzuki H
    J Physiol; 2007 Sep; 583(Pt 2):505-19. PubMed ID: 17615099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and cellular localization of a modified type 1 ryanodine receptor and L-type channel proteins in non-muscle cells.
    Lee BS; Sessanna S; Laychock SG; Rubin RP
    J Membr Biol; 2002 Oct; 189(3):181-90. PubMed ID: 12395283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium release from ryanodine receptors in the nucleoplasmic reticulum.
    Marius P; Guerra MT; Nathanson MH; Ehrlich BE; Leite MF
    Cell Calcium; 2006 Jan; 39(1):65-73. PubMed ID: 16289270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial characterisation of ryanodine-induced calcium release in mouse pancreatic acinar cells.
    Ashby MC; Petersen OH; Tepikin AV
    Biochem J; 2003 Feb; 369(Pt 3):441-5. PubMed ID: 12444927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between ryanodine and IP3 receptors in ATP-stimulated mouse luteinized-granulosa cells.
    Morales-Tlalpan V; Arellano RO; Díaz-Muñoz M
    Cell Calcium; 2005 Mar; 37(3):203-13. PubMed ID: 15670867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular Ca2+ regulation in rat motoneurons during development.
    Dayanithi G; Mechaly I; Viero C; Aptel H; Alphandery S; Puech S; Bancel F; Valmier J
    Cell Calcium; 2006 Mar; 39(3):237-46. PubMed ID: 16324742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personal recollections on the discovery of the ryanodine receptors of muscle.
    Fleischer S
    Biochem Biophys Res Commun; 2008 Apr; 369(1):195-207. PubMed ID: 18182155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of spontaneous rhythmicity in smooth muscle.
    McHale N; Hollywood M; Sergeant G; Thornbury K
    J Physiol; 2006 Jan; 570(Pt 1):23-8. PubMed ID: 16239271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplification and propagation of pacemaker Ca2+ signals by cyclic ADP-ribose and the type 3 ryanodine receptor in T cells.
    Kunerth S; Langhorst MF; Schwarzmann N; Gu X; Huang L; Yang Z; Zhang L; Mills SJ; Zhang LH; Potter BV; Guse AH
    J Cell Sci; 2004 Apr; 117(Pt 10):2141-9. PubMed ID: 15054112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Expression and function changes of ryanodine receptors and inositol 1,4,5-triphosphate receptors of atrial myocytes during atrial fibrillation].
    Guo JH; Liu YS; Zhang HC; Li XB; Xu Y; Zhang YY; Yuan L
    Zhonghua Yi Xue Za Zhi; 2004 Jul; 84(14):1196-9. PubMed ID: 15387982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between inositol 1,4,5-trisphosphate receptors and ryanodine receptors in smooth muscle: one store or two?
    McGeown JG
    Cell Calcium; 2004 Jun; 35(6):613-9. PubMed ID: 15110151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of calcium signalling by dominant negative splice variant of ryanodine receptor subtype 3 in native smooth muscle cells.
    Dabertrand F; Morel JL; Sorrentino V; Mironneau J; Mironneau C; Macrez N
    Cell Calcium; 2006 Jul; 40(1):11-21. PubMed ID: 16678258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Intracellular calcium oscillations].
    Nohmi M; Kuba K
    Tanpakushitsu Kakusan Koso; 1998 Sep; 43(12 Suppl):1539-46. PubMed ID: 9788150
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.