These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 1569500)
1. Osteoporosis after spinal cord injury. Garland DE; Stewart CA; Adkins RH; Hu SS; Rosen C; Liotta FJ; Weinstein DA J Orthop Res; 1992 May; 10(3):371-8. PubMed ID: 1569500 [TBL] [Abstract][Full Text] [Related]
2. Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. Modlesky CM; Majumdar S; Narasimhan A; Dudley GA J Bone Miner Res; 2004 Jan; 19(1):48-55. PubMed ID: 14753736 [TBL] [Abstract][Full Text] [Related]
3. Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT). Frotzler A; Berger M; Knecht H; Eser P Bone; 2008 Sep; 43(3):549-55. PubMed ID: 18567554 [TBL] [Abstract][Full Text] [Related]
4. Bone loss and mechanical properties of tibia in spinal cord injured men. Dionyssiotis Y; Trovas G; Galanos A; Raptou P; Papaioannou N; Papagelopoulos P; Petropoulou K; Lyritis GP J Musculoskelet Neuronal Interact; 2007; 7(1):62-8. PubMed ID: 17396008 [TBL] [Abstract][Full Text] [Related]
5. Effects of ultra-early stage hyperbaric oxygenation on the hind limb bone mineral density in rats after complete spinal cord transection. Liu M; Wu X; Tong M Undersea Hyperb Med; 2013; 40(1):15-22. PubMed ID: 23397864 [TBL] [Abstract][Full Text] [Related]
6. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Eser P; Frotzler A; Zehnder Y; Wick L; Knecht H; Denoth J; Schiessl H Bone; 2004 May; 34(5):869-80. PubMed ID: 15121019 [TBL] [Abstract][Full Text] [Related]
7. Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Wilmet E; Ismail AA; Heilporn A; Welraeds D; Bergmann P Paraplegia; 1995 Nov; 33(11):674-7. PubMed ID: 8584304 [TBL] [Abstract][Full Text] [Related]
8. Bone mineral density after bicycle ergometry training. Leeds EM; Klose KJ; Ganz W; Serafini A; Green BA Arch Phys Med Rehabil; 1990 Mar; 71(3):207-9. PubMed ID: 2317139 [TBL] [Abstract][Full Text] [Related]
9. Regional changes in bone mineral density following spinal cord injury in children. Liu AJ; Briody JN; Munns CF; Waugh MC Dev Neurorehabil; 2008; 11(1):51-9. PubMed ID: 17943503 [TBL] [Abstract][Full Text] [Related]
10. Mineral metabolism in spinal cord injury. Naftchi NE; Viau AT; Sell GH; Lowman EW Arch Phys Med Rehabil; 1980 Mar; 61(3):139-42. PubMed ID: 7369852 [TBL] [Abstract][Full Text] [Related]
11. Changes in bone mineral density at the proximal tibia after total knee arthroplasty: a 2-year follow-up of 28 knees using dual energy X-ray absorptiometry. Li MG; Nilsson KG J Orthop Res; 2000 Jan; 18(1):40-7. PubMed ID: 10716277 [TBL] [Abstract][Full Text] [Related]
12. Bone loss at the distal femur and proximal tibia in persons with spinal cord injury: imaging approaches, risk of fracture, and potential treatment options. Cirnigliaro CM; Myslinski MJ; La Fountaine MF; Kirshblum SC; Forrest GF; Bauman WA Osteoporos Int; 2017 Mar; 28(3):747-765. PubMed ID: 27921146 [TBL] [Abstract][Full Text] [Related]
13. Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Mohr T; Podenphant J; Biering-Sorensen F; Galbo H; Thamsborg G; Kjaer M Calcif Tissue Int; 1997 Jul; 61(1):22-5. PubMed ID: 9192506 [TBL] [Abstract][Full Text] [Related]
14. Changes in osteoprotegerin/RANKL system, bone mineral density, and bone biochemicals markers in patients with recent spinal cord injury. Maïmoun L; Couret I; Mariano-Goulart D; Dupuy AM; Micallef JP; Peruchon E; Ohanna F; Cristol JP; Rossi M; Leroux JL Calcif Tissue Int; 2005 Jun; 76(6):404-11. PubMed ID: 15812577 [TBL] [Abstract][Full Text] [Related]
15. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Ward KA; Roberts SA; Adams JE; Mughal MZ Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561 [TBL] [Abstract][Full Text] [Related]
16. Intensive electrical stimulation attenuates femoral bone loss in acute spinal cord injury. Groah SL; Lichy AM; Libin AV; Ljungberg I PM R; 2010 Dec; 2(12):1080-7. PubMed ID: 21145519 [TBL] [Abstract][Full Text] [Related]
17. Bone mineral density in rural Thai adults living in Khon Kaen province. Pongchaiyakul C; Rojroongwasinkul N; Chotmongkol R; Kosulwat V; Charoenkiatkul S; Rajatanavin R J Med Assoc Thai; 2002 Feb; 85(2):235-44. PubMed ID: 12081125 [TBL] [Abstract][Full Text] [Related]
18. Differential changes in regional bone mineral density in healthy Chinese: age-related and sex-dependent. Yao WJ; Wu CH; Wang ST; Chang CJ; Chiu NT; Yu CY Calcif Tissue Int; 2001 Jun; 68(6):330-6. PubMed ID: 11685419 [TBL] [Abstract][Full Text] [Related]
19. Deteriorated geometric structure and strength of the midfemur in men with complete spinal cord injury. Modlesky CM; Slade JM; Bickel CS; Meyer RA; Dudley GA Bone; 2005 Feb; 36(2):331-9. PubMed ID: 15780960 [TBL] [Abstract][Full Text] [Related]
20. Paraplegia-related alterations of bone density in forearm and hip in Greek patients after spinal cord injury. Vlychou M; Papadaki PJ; Zavras GM; Vasiou K; Kelekis N; Malizos KN; Fezoulidis IB Disabil Rehabil; 2003 Apr; 25(7):324-30. PubMed ID: 12745956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]