These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15695175)

  • 1. Thyroid hormone inhibits slow skeletal TnI expression in cardiac TnI-null myocardial cells.
    Riedel B; Jia Y; Du J; Akerman S; Huang X
    Tissue Cell; 2005 Feb; 37(1):47-51. PubMed ID: 15695175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thyroid hormone regulates slow skeletal troponin I gene inactivation in cardiac troponin I null mouse hearts.
    Huang X; Lee KJ; Riedel B; Zhang C; Lemanski LF; Walker JW
    J Mol Cell Cardiol; 2000 Dec; 32(12):2221-8. PubMed ID: 11112997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Troponin I isoform expression is developmentally regulated in differentiating embryonic stem cell-derived cardiac myocytes.
    Westfall MV; Samuelson LC; Metzger JM
    Dev Dyn; 1996 May; 206(1):24-38. PubMed ID: 9019244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Troponin I isoform expression in human and experimental atrial fibrillation.
    Thijssen VL; Ausma J; Gorza L; van der Velden HM; Allessie MA; Van Gelder IC; Borgers M; van Eys GJ
    Circulation; 2004 Aug; 110(7):770-5. PubMed ID: 15289369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation of slow-skeletal and cardiac troponin I mRNA during development and by thyroid hormone in rat heart.
    Averyhart-Fullard V; Fraker LD; Murphy AM; Solaro RJ
    J Mol Cell Cardiol; 1994 May; 26(5):609-16. PubMed ID: 8072015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Troponin I phosphorylation plays an important role in the relaxant effect of beta-adrenergic stimulation in mouse hearts.
    Peña JR; Wolska BM
    Cardiovasc Res; 2004 Mar; 61(4):756-63. PubMed ID: 14985072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription factor Yin Yang 1 represses fetal troponin I gene expression in neonatal myocardial cells.
    Nan C; Huang X
    Biochem Biophys Res Commun; 2009 Jan; 378(1):62-7. PubMed ID: 19013134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The miscommunicative cardiac cell: when good proteins go bad.
    Gomes AV; Venkatraman G; Potter JD
    Ann N Y Acad Sci; 2005 Jun; 1047():30-7. PubMed ID: 16093482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular determinants of cardiac myocyte performance as conferred by isoform-specific TnI residues.
    Thompson BR; Houang EM; Sham YY; Metzger JM
    Biophys J; 2014 May; 106(10):2105-14. PubMed ID: 24853739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow skeletal troponin I gene transfer, expression, and myofilament incorporation enhances adult cardiac myocyte contractile function.
    Westfall MV; Rust EM; Metzger JM
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5444-9. PubMed ID: 9144257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of slow skeletal troponin I in adult transgenic mouse heart muscle reduces the force decline observed during acidic conditions.
    Wolska BM; Vijayan K; Arteaga GM; Konhilas JP; Phillips RM; Kim R; Naya T; Leiden JM; Martin AF; de Tombe PP; Solaro RJ
    J Physiol; 2001 Nov; 536(Pt 3):863-70. PubMed ID: 11691878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac transgenic and gene transfer strategies converge to support an important role for troponin I in regulating relaxation in cardiac myocytes.
    Yasuda S; Coutu P; Sadayappan S; Robbins J; Metzger JM
    Circ Res; 2007 Aug; 101(4):377-86. PubMed ID: 17615373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chimera analysis of troponin I domains that influence Ca(2+)-activated myofilament tension in adult cardiac myocytes.
    Westfall MV; Albayya FP; Turner II; Metzger JM
    Circ Res; 2000 Mar; 86(4):470-7. PubMed ID: 10700453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pH-sensitive interaction of troponin I with troponin C coupled with strongly binding cross-bridges in cardiac myofilament activation.
    Morimoto S; Ohta M; Goto T; Ohtsuki I
    Biochem Biophys Res Commun; 2001 Apr; 282(3):811-5. PubMed ID: 11401536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myofilament calcium sensitivity and cardiac disease: insights from troponin I isoforms and mutants.
    Westfall MV; Borton AR; Albayya FP; Metzger JM
    Circ Res; 2002 Sep; 91(6):525-31. PubMed ID: 12242271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative RNA splicing-generated cardiac troponin T isoform switching: a non-heart-restricted genetic programming synchronized in developing cardiac and skeletal muscles.
    Jin JP
    Biochem Biophys Res Commun; 1996 Aug; 225(3):883-9. PubMed ID: 8780706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myofilament incorporation determines the stoichiometry of troponin I in transgenic expression and the rescue of a null mutation.
    Feng HZ; Hossain MM; Huang XP; Jin JP
    Arch Biochem Biophys; 2009 Jul; 487(1):36-41. PubMed ID: 19433057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic regulation of cardiac myofibril gene expression during heart development.
    Zhao W; Liu L; Pan B; Xu Y; Zhu J; Nan C; Huang X; Tian J
    Cardiovasc Toxicol; 2015 Jul; 15(3):203-9. PubMed ID: 25296860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac troponin I threonine 144: role in myofilament length dependent activation.
    Tachampa K; Wang H; Farman GP; de Tombe PP
    Circ Res; 2007 Nov; 101(11):1081-3. PubMed ID: 17975107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length and protein kinase A modulations of myocytes in cardiac myosin binding protein C-deficient mice.
    Cazorla O; Szilagyi S; Vignier N; Salazar G; Krämer E; Vassort G; Carrier L; Lacampagne A
    Cardiovasc Res; 2006 Feb; 69(2):370-80. PubMed ID: 16380103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.