These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15695209)

  • 1. Adaptation of brain regions to habitat complexity: a comparative analysis in bats (Chiroptera).
    Safi K; Dechmann DK
    Proc Biol Sci; 2005 Jan; 272(1559):179-86. PubMed ID: 15695209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of body size on the wing movements of pteropodid bats, with insights into thrust and lift production.
    Riskin DK; Iriarte-Díaz J; Middleton KM; Breuer KS; Swartz SM
    J Exp Biol; 2010 Dec; 213(Pt 23):4110-22. PubMed ID: 21075953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation.
    Davies KT; Bates PJ; Maryanto I; Cotton JA; Rossiter SJ
    PLoS One; 2013; 8(4):e61998. PubMed ID: 23637943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light enough to travel: migratory bats have smaller brains, but not larger hippocampi, than sedentary species.
    McGuire LP; Ratcliffe JM
    Biol Lett; 2011 Apr; 7(2):233-6. PubMed ID: 20880862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative analysis of brain size in relation to foraging ecology and phylogeny in the Chiroptera.
    Hutcheon JM; Kirsch JA; Garland T
    Brain Behav Evol; 2002; 60(3):165-80. PubMed ID: 12417821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of ecology in shaping external nasal morphology in bats and implications for olfactory tracking.
    Brokaw AF; Smotherman M
    PLoS One; 2020; 15(1):e0226689. PubMed ID: 31914127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wing morphology predicts individual niche specialization in Pteronotus mesoamericanus (Mammalia: Chiroptera).
    Magalhães de Oliveira HF; Camargo NF; Hemprich-Bennett DR; Rodríguez-Herrera B; Rossiter SJ; Clare EL
    PLoS One; 2020; 15(5):e0232601. PubMed ID: 32392221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Organization of the auditory cortex of chiroptera in a comparative series of animals].
    Aĭrapetiants ESh; Burikova NV; Konstantinov AI; Kotelenko LM; Kulikov GA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1973; 23(2):392-402. PubMed ID: 4771947
    [No Abstract]   [Full Text] [Related]  

  • 9. Phylogeny and foraging behaviour shape modular morphological variation in bat humeri.
    López-Aguirre C; Hand SJ; Koyabu D; Tu VT; Wilson LAB
    J Anat; 2021 Jun; 238(6):1312-1329. PubMed ID: 33372711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On neurophysiological mechanisms of the echolocating apparatus in bats (frequency parameters).
    Ajrapetianz ES; Vasilyev AG
    Int J Neurosci; 1971 May; 1(5):279-86. PubMed ID: 5161764
    [No Abstract]   [Full Text] [Related]  

  • 11. Physical constraints on thermoregulation and flight drive morphological evolution in bats.
    Rubalcaba JG; Gouveia SF; Villalobos F; Cruz-Neto AP; Castro MG; Amado TF; Martinez PA; Navas CA; Dobrovolski R; Diniz-Filho JAF; Olalla-Tárraga MÁ
    Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2103745119. PubMed ID: 35377801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral flexibility positively correlated with relative brain volume in predatory bats.
    Ratcliffe JM; Fenton MB; Shettleworth SJ
    Brain Behav Evol; 2006; 67(3):165-76. PubMed ID: 16415571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soaring and non-soaring bats of the family pteropodidae (flying foxes, Pteropus spp.): wing morphology and flight performance.
    Lindhe-Norberg UM; Brooke AP; Trewhella WJ
    J Exp Biol; 2000 Feb; 203(Pt 3):651-64. PubMed ID: 10637193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional laminar and columnar organization of the auditory centers in echolocating Japanese greater horseshoe bats.
    Taniguchi I; Arai O; Saito N
    Neurosci Lett; 1988 May; 88(1):17-20. PubMed ID: 3399127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity in the organization of elastin bundles and intramembranous muscles in bat wings.
    Cheney JA; Allen JJ; Swartz SM
    J Anat; 2017 Apr; 230(4):510-523. PubMed ID: 28070887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is humanlike cytoarchitectural asymmetry present in another species with complex social vocalization? A stereologic analysis of mustached bat auditory cortex.
    Sherwood CC; Raghanti MA; Wenstrup JJ
    Brain Res; 2005 May; 1045(1-2):164-74. PubMed ID: 15910775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sexual dimorphism in Sturnira lilium (Chiroptera, Phyllostomidae): can pregnancy and pup carrying be responsible for differences in wing shape?
    de Camargo NF; de Oliveira HF
    PLoS One; 2012; 7(11):e49734. PubMed ID: 23166759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain structures of echolocating and nonecholocating bats, derived in vivo from magnetic resonance images.
    Hu K; Li Y; Gu X; Lei H; Zhang S
    Neuroreport; 2006 Nov; 17(16):1743-6. PubMed ID: 17047465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wing morphology predicts geographic range size in vespertilionid bats.
    Luo B; Santana SE; Pang Y; Wang M; Xiao Y; Feng J
    Sci Rep; 2019 Mar; 9(1):4526. PubMed ID: 30872741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. No apparent ecological trend to the flight-initiating jump performance of five bat species.
    Gardiner JD; Nudds RL
    J Exp Biol; 2011 Jul; 214(Pt 13):2182-8. PubMed ID: 21653812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.