BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 15695335)

  • 21. An automated and quantitative method to evaluate progression of striatal pathology in Huntington's disease transgenic mice.
    Liang X; Wu J; Egorova P; Bezprozvanny I
    J Huntingtons Dis; 2014; 3(4):343-350. PubMed ID: 25575955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ginsenosides protect striatal neurons in a cellular model of Huntington's disease.
    Wu J; Jeong HK; Bulin SE; Kwon SW; Park JH; Bezprozvanny I
    J Neurosci Res; 2009 Jun; 87(8):1904-12. PubMed ID: 19185022
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease.
    Wang JQ; Chen Q; Wang X; Wang QC; Wang Y; Cheng HP; Guo C; Sun Q; Chen Q; Tang TS
    J Biol Chem; 2013 Feb; 288(5):3070-84. PubMed ID: 23250749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diminished hippocalcin expression in Huntington's disease brain does not account for increased striatal neuron vulnerability as assessed in primary neurons.
    Rudinskiy N; Kaneko YA; Beesen AA; Gokce O; Régulier E; Déglon N; Luthi-Carter R
    J Neurochem; 2009 Oct; 111(2):460-72. PubMed ID: 19686238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptional dysregulation in striatal projection- and interneurons in a mouse model of Huntington's disease: neuronal selectivity and potential neuroprotective role of HAP1.
    Zucker B; Luthi-Carter R; Kama JA; Dunah AW; Stern EA; Fox JH; Standaert DG; Young AB; Augood SJ
    Hum Mol Genet; 2005 Jan; 14(2):179-89. PubMed ID: 15548548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HAP1 facilitates effects of mutant huntingtin on inositol 1,4,5-trisphosphate-induced Ca release in primary culture of striatal medium spiny neurons.
    Tang TS; Tu H; Orban PC; Chan EY; Hayden MR; Bezprozvanny I
    Eur J Neurosci; 2004 Oct; 20(7):1779-87. PubMed ID: 15379999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered NMDA receptor trafficking in a yeast artificial chromosome transgenic mouse model of Huntington's disease.
    Fan MM; Fernandes HB; Zhang LY; Hayden MR; Raymond LA
    J Neurosci; 2007 Apr; 27(14):3768-79. PubMed ID: 17409241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excitotoxic neuronal death and the pathogenesis of Huntington's disease.
    Estrada Sánchez AM; Mejía-Toiber J; Massieu L
    Arch Med Res; 2008 Apr; 39(3):265-76. PubMed ID: 18279698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuronal store-operated calcium entry pathway as a novel therapeutic target for Huntington's disease treatment.
    Wu J; Shih HP; Vigont V; Hrdlicka L; Diggins L; Singh C; Mahoney M; Chesworth R; Shapiro G; Zimina O; Chen X; Wu Q; Glushankova L; Ahlijanian M; Koenig G; Mozhayeva GN; Kaznacheyeva E; Bezprozvanny I
    Chem Biol; 2011 Jun; 18(6):777-93. PubMed ID: 21700213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective neuronal degeneration in Huntington's disease.
    Cowan CM; Raymond LA
    Curr Top Dev Biol; 2006; 75():25-71. PubMed ID: 16984809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Huntingtin-Associated Protein 1A Regulates Store-Operated Calcium Entry in Medium Spiny Neurons From Transgenic YAC128 Mice, a Model of Huntington's Disease.
    Czeredys M; Vigont VA; Boeva VA; Mikoshiba K; Kaznacheyeva EV; Kuznicki J
    Front Cell Neurosci; 2018; 12():381. PubMed ID: 30455632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamate toxicity in the striatum of the R6/2 Huntington's disease transgenic mice is age-dependent and correlates with decreased levels of glutamate transporters.
    Estrada-Sánchez AM; Montiel T; Segovia J; Massieu L
    Neurobiol Dis; 2009 Apr; 34(1):78-86. PubMed ID: 19168136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting glutamate mediated excitotoxicity in Huntington's disease: neural progenitors and partial glutamate antagonist--memantine.
    Anitha M; Nandhu MS; Anju TR; Jes P; Paulose CS
    Med Hypotheses; 2011 Jan; 76(1):138-40. PubMed ID: 20943326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial Abnormalities and Synaptic Damage in Huntington's Disease: a Focus on Defective Mitophagy and Mitochondria-Targeted Therapeutics.
    Sawant N; Morton H; Kshirsagar S; Reddy AP; Reddy PH
    Mol Neurobiol; 2021 Dec; 58(12):6350-6377. PubMed ID: 34519969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Altered P2X7-receptor level and function in mouse models of Huntington's disease and therapeutic efficacy of antagonist administration.
    Díaz-Hernández M; Díez-Zaera M; Sánchez-Nogueiro J; Gómez-Villafuertes R; Canals JM; Alberch J; Miras-Portugal MT; Lucas JJ
    FASEB J; 2009 Jun; 23(6):1893-906. PubMed ID: 19171786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cystamine increases L-cysteine levels in Huntington's disease transgenic mouse brain and in a PC12 model of polyglutamine aggregation.
    Fox JH; Barber DS; Singh B; Zucker B; Swindell MK; Norflus F; Buzescu R; Chopra R; Ferrante RJ; Kazantsev A; Hersch SM
    J Neurochem; 2004 Oct; 91(2):413-22. PubMed ID: 15447674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nortriptyline delays disease onset in models of chronic neurodegeneration.
    Wang H; Guan Y; Wang X; Smith K; Cormier K; Zhu S; Stavrovskaya IG; Huo C; Ferrante RJ; Kristal BS; Friedlander RM
    Eur J Neurosci; 2007 Aug; 26(3):633-41. PubMed ID: 17686041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMDA receptor function in mouse models of Huntington disease.
    Cepeda C; Ariano MA; Calvert CR; Flores-Hernández J; Chandler SH; Leavitt BR; Hayden MR; Levine MS
    J Neurosci Res; 2001 Nov; 66(4):525-39. PubMed ID: 11746372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. YAC128 Huntington's disease transgenic mice show enhanced short-term hippocampal synaptic plasticity early in the course of the disease.
    Ghilan M; Bostrom CA; Hryciw BN; Simpson JM; Christie BR; Gil-Mohapel J
    Brain Res; 2014 Sep; 1581():117-28. PubMed ID: 24949563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arachidonic acid induces both Na+ and Ca2+ entry resulting in apoptosis.
    Fang KM; Chang WL; Wang SM; Su MJ; Wu ML
    J Neurochem; 2008 Mar; 104(5):1177-89. PubMed ID: 17986230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.