These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 15695552)
1. Phytochrome evolution in green and nongreen plants. Mathews S J Hered; 2005; 96(3):197-204. PubMed ID: 15695552 [TBL] [Abstract][Full Text] [Related]
2. Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mathews S Mol Ecol; 2006 Oct; 15(12):3483-503. PubMed ID: 17032252 [TBL] [Abstract][Full Text] [Related]
3. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Park E; Kim J; Lee Y; Shin J; Oh E; Chung WI; Liu JR; Choi G Plant Cell Physiol; 2004 Aug; 45(8):968-75. PubMed ID: 15356322 [TBL] [Abstract][Full Text] [Related]
4. Adaptive evolution in the photosensory domain of phytochrome A in early angiosperms. Mathews S; Burleigh JG; Donoghue MJ Mol Biol Evol; 2003 Jul; 20(7):1087-97. PubMed ID: 12777523 [TBL] [Abstract][Full Text] [Related]
5. Light signals, phytochromes and cross-talk with other environmental cues. Franklin KA; Whitelam GC J Exp Bot; 2004 Jan; 55(395):271-6. PubMed ID: 14673030 [TBL] [Abstract][Full Text] [Related]
6. The evolution and function of blue and red light photoreceptors. Falciatore A; Bowler C Curr Top Dev Biol; 2005; 68():317-50. PubMed ID: 16125004 [TBL] [Abstract][Full Text] [Related]
7. Phylogenetic relationships of B-related phytochromes in the Brassicaceae: Redundancy and the persistence of phytochrome D. Mathews S; McBreen K Mol Phylogenet Evol; 2008 Nov; 49(2):411-23. PubMed ID: 18768161 [TBL] [Abstract][Full Text] [Related]
8. Phytochrome A is an irradiance-dependent red light sensor. Franklin KA; Allen T; Whitelam GC Plant J; 2007 Apr; 50(1):108-17. PubMed ID: 17346261 [TBL] [Abstract][Full Text] [Related]
9. The nuclear localization signal and the C-terminal region of FHY1 are required for transmission of phytochrome A signals. Zeidler M; Zhou Q; Sarda X; Yau CP; Chua NH Plant J; 2004 Nov; 40(3):355-65. PubMed ID: 15469493 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanisms of phytochrome signal transduction in higher plants. Chu LY; Shao HB; Li MY Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):154-61. PubMed ID: 16202571 [TBL] [Abstract][Full Text] [Related]
11. Proteomic pattern-based analyses of light responses in Arabidopsis thaliana wild-type and photoreceptor mutants. Kim DS; Cho DS; Park WM; Na HJ; Nam HG Proteomics; 2006 May; 6(10):3040-9. PubMed ID: 16619305 [TBL] [Abstract][Full Text] [Related]
12. Phytochromes and light signal perception by plants--an emerging synthesis. Smith H Nature; 2000 Oct; 407(6804):585-91. PubMed ID: 11034200 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the function of the photoreceptors phytochrome B and phytochrome D in Nicotiana plumbaginifolia and Arabidopsis thaliana. Fernández AP; Gil P; Valkai I; Nagy F; Schäfer E Plant Cell Physiol; 2005 May; 46(5):790-6. PubMed ID: 15753105 [TBL] [Abstract][Full Text] [Related]
14. The signal transducing photoreceptors of plants. Franklin KA; Larner VS; Whitelam GC Int J Dev Biol; 2005; 49(5-6):653-64. PubMed ID: 16096972 [TBL] [Abstract][Full Text] [Related]
15. Signaling mechanisms of higher plant photoreceptors: a structure-function perspective. Wang H Curr Top Dev Biol; 2005; 68():227-61. PubMed ID: 16125001 [TBL] [Abstract][Full Text] [Related]
16. FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. Hiltbrunner A; Tscheuschler A; Viczián A; Kunkel T; Kircher S; Schäfer E Plant Cell Physiol; 2006 Aug; 47(8):1023-34. PubMed ID: 16861711 [TBL] [Abstract][Full Text] [Related]
17. Environmental regulation of flowering. Ausín I; Alonso-Blanco C; Martínez-Zapater JM Int J Dev Biol; 2005; 49(5-6):689-705. PubMed ID: 16096975 [TBL] [Abstract][Full Text] [Related]