BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15695552)

  • 21. Phytochrome phosphorylation in plant light signaling.
    Kim JI; Park JE; Zarate X; Song PS
    Photochem Photobiol Sci; 2005 Sep; 4(9):681-7. PubMed ID: 16121277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer.
    Ryu JS; Kim JI; Kunkel T; Kim BC; Cho DS; Hong SH; Kim SH; Fernández AP; Kim Y; Alonso JM; Ecker JR; Nagy F; Lim PO; Song PS; Schäfer E; Nam HG
    Cell; 2005 Feb; 120(3):395-406. PubMed ID: 15707897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytochrome-mediated agravitropism in Arabidopsis hypocotyls requires GIL1 and confers a fitness advantage.
    Allen T; Ingles PJ; Praekelt U; Smith H; Whitelam GC
    Plant J; 2006 May; 46(4):641-8. PubMed ID: 16640600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear accumulation of the phytochrome A photoreceptor requires FHY1.
    Hiltbrunner A; Viczián A; Bury E; Tscheuschler A; Kircher S; Tóth R; Honsberger A; Nagy F; Fankhauser C; Schäfer E
    Curr Biol; 2005 Dec; 15(23):2125-30. PubMed ID: 16332538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new type of mutation in phytochrome A causes enhanced light sensitivity and alters the degradation and subcellular partitioning of the photoreceptor.
    Dieterle M; Bauer D; Büche C; Krenz M; Schäfer E; Kretsch T
    Plant J; 2005 Jan; 41(1):146-61. PubMed ID: 15610357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering.
    Ishikawa M; Kiba T; Chua NH
    Plant J; 2006 Jun; 46(5):736-46. PubMed ID: 16709190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytochromes and photomorphogenesis in Arabidopsis.
    Whitelam GC; Patel S; Devlin PF
    Philos Trans R Soc Lond B Biol Sci; 1998 Sep; 353(1374):1445-53. PubMed ID: 9800208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular evolution of the phytochrome gene family in sorghum: changing rates of synonymous and replacement evolution.
    White GM; Hamblin MT; Kresovich S
    Mol Biol Evol; 2004 Apr; 21(4):716-23. PubMed ID: 14963106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light and temperature signal crosstalk in plant development.
    Franklin KA
    Curr Opin Plant Biol; 2009 Feb; 12(1):63-8. PubMed ID: 18951837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence.
    Johnson DA; Thomas MA
    Mol Biol Evol; 2007 Nov; 24(11):2412-23. PubMed ID: 17827171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural variation in light sensitivity of Arabidopsis.
    Maloof JN; Borevitz JO; Dabi T; Lutes J; Nehring RB; Redfern JL; Trainer GT; Wilson JM; Asami T; Berry CC; Weigel D; Chory J
    Nat Genet; 2001 Dec; 29(4):441-6. PubMed ID: 11726931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-regulated nucleo-cytoplasmic partitioning of phytochromes.
    Kevei E; Schafer E; Nagy F
    J Exp Bot; 2007; 58(12):3113-24. PubMed ID: 17905733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals.
    Chen M; Tao Y; Lim J; Shaw A; Chory J
    Curr Biol; 2005 Apr; 15(7):637-42. PubMed ID: 15823535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles for the N- and C-terminal domains of phytochrome B in interactions between phytochrome B and cryptochrome signaling cascades.
    Usami T; Matsushita T; Oka Y; Mochizuki N; Nagatani A
    Plant Cell Physiol; 2007 Mar; 48(3):424-33. PubMed ID: 17251203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation.
    Tepperman JM; Hwang YS; Quail PH
    Plant J; 2006 Dec; 48(5):728-42. PubMed ID: 17076805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signal transduction during light-quality acclimation in cyanobacteria: a model system for understanding phytochrome-response pathways in prokaryotes.
    Stowe-Evans EL; Kehoe DM
    Photochem Photobiol Sci; 2004 Jun; 3(6):495-502. PubMed ID: 15170477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogeny and domain evolution in the APETALA2-like gene family.
    Kim S; Soltis PS; Wall K; Soltis DE
    Mol Biol Evol; 2006 Jan; 23(1):107-20. PubMed ID: 16151182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discordant longitudinal clines in flowering time and phytochrome C in Arabidopsis thaliana.
    Samis KE; Heath KD; Stinchcombe JR
    Evolution; 2008 Dec; 62(12):2971-83. PubMed ID: 18752603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary origin of phytochrome responses and signaling in land plants.
    Inoue K; Nishihama R; Kohchi T
    Plant Cell Environ; 2017 Nov; 40(11):2502-2508. PubMed ID: 28098347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.