These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 1569558)

  • 21. Molecular dynamics simulation of protein denaturation: solvation of the hydrophobic cores and secondary structure of barnase.
    Caflisch A; Karplus M
    Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1746-50. PubMed ID: 8127876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineered disulfide bonds as probes of the folding pathway of barnase: increasing the stability of proteins against the rate of denaturation.
    Clarke J; Fersht AR
    Biochemistry; 1993 Apr; 32(16):4322-9. PubMed ID: 8476861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of the hydrophobic core in the transition state for folding of chymotrypsin inhibitor 2: a critical test of the protein engineering method of analysis.
    Jackson SE; elMasry N; Fersht AR
    Biochemistry; 1993 Oct; 32(42):11270-8. PubMed ID: 8218192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities.
    Buckle AM; Cramer P; Fersht AR
    Biochemistry; 1996 Apr; 35(14):4298-305. PubMed ID: 8605178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An N-terminal fragment of barnase has residual helical structure similar to that in a refolding intermediate.
    Sancho J; Neira JL; Fersht AR
    J Mol Biol; 1992 Apr; 224(3):749-58. PubMed ID: 1569554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rationally designing the accumulation of a folding intermediate of barnase by protein engineering.
    Sanz JM; Fersht AR
    Biochemistry; 1993 Dec; 32(49):13584-92. PubMed ID: 8257694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extrapolation to water of kinetic and equilibrium data for the unfolding of barnase in urea solutions.
    Matouschek A; Matthews JM; Johnson CM; Fersht AR
    Protein Eng; 1994 Sep; 7(9):1089-95. PubMed ID: 7831279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of the transition state in the folding process of human procarboxypeptidase A2 activation domain.
    Villegas V; Martínez JC; Avilés FX; Serrano L
    J Mol Biol; 1998 Nov; 283(5):1027-36. PubMed ID: 9799641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unfolding simulations of the 85-102 beta-hairpin of barnase.
    Pugliese L; Prévost M; Wodak SJ
    J Mol Biol; 1995 Aug; 251(3):432-47. PubMed ID: 7650741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational states bound by the molecular chaperones GroEL and secB: a hidden unfolding (annealing) activity.
    Zahn R; Perrett S; Fersht AR
    J Mol Biol; 1996 Aug; 261(1):43-61. PubMed ID: 8760501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Importance of two buried salt bridges in the stability and folding pathway of barnase.
    Tissot AC; Vuilleumier S; Fersht AR
    Biochemistry; 1996 May; 35(21):6786-94. PubMed ID: 8639630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transient folding intermediates characterized by protein engineering.
    Matouschek A; Kellis JT; Serrano L; Bycroft M; Fersht AR
    Nature; 1990 Aug; 346(6283):440-5. PubMed ID: 2377205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward solving the folding pathway of barnase: the complete backbone 13C, 15N, and 1H NMR assignments of its pH-denatured state.
    Arcus VL; Vuilleumier S; Freund SM; Bycroft M; Fersht AR
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9412-6. PubMed ID: 7937780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of the transition state for folding of the 129 aa protein CheY resembles that of a smaller protein, CI-2.
    Lopez-Hernandez E; Serrano L
    Fold Des; 1995; 1(1):43-55. PubMed ID: 9162138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of experimental and computational methods for mapping the interactions present in the transition state for folding of FKBP12.
    Main ER; Fulton KF; Daggett V; Jackson SE
    J Biol Phys; 2001 Jun; 27(2-3):99-117. PubMed ID: 23345737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the folding funnel of a polypeptide chain by biophysical studies on protein fragments.
    Neira JL; Fersht AR
    J Mol Biol; 1999 Jan; 285(3):1309-33. PubMed ID: 9887278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping the interactions present in the transition state for unfolding/folding of FKBP12.
    Fulton KF; Main ER; Daggett V; Jackson SE
    J Mol Biol; 1999 Aug; 291(2):445-61. PubMed ID: 10438631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The contribution of the residues from the main hydrophobic core of ribonuclease A to its pressure-folding transition state.
    Font J; Benito A; Lange R; Ribó M; Vilanova M
    Protein Sci; 2006 May; 15(5):1000-9. PubMed ID: 16597833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of residual structure in the thermally denatured state of barnase by simulation and experiment: description of the folding pathway.
    Bond CJ; Wong KB; Clarke J; Fersht AR; Daggett V
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13409-13. PubMed ID: 9391038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical Folding and Unfolding of Protein Barnase at the Single-Molecule Level.
    Alemany A; Rey-Serra B; Frutos S; Cecconi C; Ritort F
    Biophys J; 2016 Jan; 110(1):63-74. PubMed ID: 26745410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.