These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 15695640)
1. Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato. Brumbarova T; Bauer P Plant Physiol; 2005 Mar; 137(3):1018-26. PubMed ID: 15695640 [TBL] [Abstract][Full Text] [Related]
2. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Ling HQ; Bauer P; Bereczky Z; Keller B; Ganal M Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13938-43. PubMed ID: 12370409 [TBL] [Abstract][Full Text] [Related]
3. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato. Du J; Huang Z; Wang B; Sun H; Chen C; Ling HQ; Wu H Ann Bot; 2015 Jul; 116(1):23-34. PubMed ID: 26070639 [TBL] [Abstract][Full Text] [Related]
4. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Yuan YX; Zhang J; Wang DW; Ling HQ Cell Res; 2005 Aug; 15(8):613-21. PubMed ID: 16117851 [TBL] [Abstract][Full Text] [Related]
5. A proteomic study showing differential regulation of stress, redox regulation and peroxidase proteins by iron supply and the transcription factor FER. Brumbarova T; Matros A; Mock HP; Bauer P Plant J; 2008 Apr; 54(2):321-34. PubMed ID: 18221364 [TBL] [Abstract][Full Text] [Related]
6. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Graziano M; Lamattina L Plant J; 2007 Dec; 52(5):949-60. PubMed ID: 17892445 [TBL] [Abstract][Full Text] [Related]
7. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. Jakoby M; Wang HY; Reidt W; Weisshaar B; Bauer P FEBS Lett; 2004 Nov; 577(3):528-34. PubMed ID: 15556641 [TBL] [Abstract][Full Text] [Related]
8. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. Bereczky Z; Wang HY; Schubert V; Ganal M; Bauer P J Biol Chem; 2003 Jul; 278(27):24697-704. PubMed ID: 12709425 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. Li L; Cheng X; Ling HQ Plant Mol Biol; 2004 Jan; 54(1):125-36. PubMed ID: 15159639 [TBL] [Abstract][Full Text] [Related]
10. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Colangelo EP; Guerinot ML Plant Cell; 2004 Dec; 16(12):3400-12. PubMed ID: 15539473 [TBL] [Abstract][Full Text] [Related]
11. Genetic analysis of two tomato mutants affected in the regulation of iron metabolism. Ling HQ; Pich A; Scholz G; Ganal MW Mol Gen Genet; 1996 Aug; 252(1-2):87-92. PubMed ID: 8804407 [TBL] [Abstract][Full Text] [Related]
12. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Eckhardt U; Mas Marques A; Buckhout TJ Plant Mol Biol; 2001 Mar; 45(4):437-48. PubMed ID: 11352462 [TBL] [Abstract][Full Text] [Related]
13. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Jin CW; Du ST; Chen WW; Li GX; Zhang YS; Zheng SJ Plant Physiol; 2009 May; 150(1):272-80. PubMed ID: 19329565 [TBL] [Abstract][Full Text] [Related]
14. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide. Meiser J; Lingam S; Bauer P Plant Physiol; 2011 Dec; 157(4):2154-66. PubMed ID: 21972265 [TBL] [Abstract][Full Text] [Related]
15. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. Luo BF; Du ST; Lu KX; Liu WJ; Lin XY; Jin CW J Exp Bot; 2012 May; 63(8):3127-36. PubMed ID: 22378950 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. Zamboni A; Zanin L; Tomasi N; Pezzotti M; Pinton R; Varanini Z; Cesco S BMC Genomics; 2012 Mar; 13():101. PubMed ID: 22433273 [TBL] [Abstract][Full Text] [Related]
17. Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. Lucena C; Waters BM; Romera FJ; García MJ; Morales M; Alcántara E; Pérez-Vicente R J Exp Bot; 2006; 57(15):4145-54. PubMed ID: 17085755 [TBL] [Abstract][Full Text] [Related]
18. The RALF2-FERONIA-MYB63 module orchestrates growth and defense in tomato roots. Fan Y; Bai J; Wu S; Zhang M; Li J; Lin R; Hu C; Jing B; Wang J; Xia X; Hu Z; Yu J New Phytol; 2024 Aug; 243(3):1123-1136. PubMed ID: 38831656 [TBL] [Abstract][Full Text] [Related]
19. The Putative Peptide Gene FEP1 Regulates Iron Deficiency Response in Arabidopsis. Hirayama T; Lei GJ; Yamaji N; Nakagawa N; Ma JF Plant Cell Physiol; 2018 Sep; 59(9):1739-1752. PubMed ID: 30032190 [TBL] [Abstract][Full Text] [Related]
20. ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) Interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) Linking Iron Deficiency and Oxidative Stress Responses. Le CT; Brumbarova T; Ivanov R; Stoof C; Weber E; Mohrbacher J; Fink-Straube C; Bauer P Plant Physiol; 2016 Jan; 170(1):540-57. PubMed ID: 26556796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]