These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 15695761)
1. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species. Briscoe AD; Bernard GD J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761 [TBL] [Abstract][Full Text] [Related]
2. Not all butterfly eyes are created equal: rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui. Briscoe AD; Bernard GD; Szeto AS; Nagy LM; White RH J Comp Neurol; 2003 Apr; 458(4):334-49. PubMed ID: 12619069 [TBL] [Abstract][Full Text] [Related]
3. A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. Wakakuwa M; Stavenga DG; Kurasawa M; Arikawa K J Exp Biol; 2004 Jul; 207(Pt 16):2803-10. PubMed ID: 15235009 [TBL] [Abstract][Full Text] [Related]
4. Reconstructing the ancestral butterfly eye: focus on the opsins. Briscoe AD J Exp Biol; 2008 Jun; 211(Pt 11):1805-13. PubMed ID: 18490396 [TBL] [Abstract][Full Text] [Related]
5. Spectral tuning of the long wavelength-sensitive cone pigment in four Australian marsupials. Arrese CA; Beazley LD; Ferguson MC; Oddy A; Hunt DM Gene; 2006 Oct; 381():13-7. PubMed ID: 16859843 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of spectral tuning in the dolphin visual pigments. Fasick JI; Robsinson PR Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225 [TBL] [Abstract][Full Text] [Related]
7. Contrasting modes of evolution of the visual pigments in Heliconius butterflies. Yuan F; Bernard GD; Le J; Briscoe AD Mol Biol Evol; 2010 Oct; 27(10):2392-405. PubMed ID: 20478921 [TBL] [Abstract][Full Text] [Related]
8. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. Sison-Mangus MP; Bernard GD; Lampel J; Briscoe AD J Exp Biol; 2006 Aug; 209(Pt 16):3079-90. PubMed ID: 16888057 [TBL] [Abstract][Full Text] [Related]
9. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Parry JW; Carleton KL; Spady T; Carboo A; Hunt DM; Bowmaker JK Curr Biol; 2005 Oct; 15(19):1734-9. PubMed ID: 16213819 [TBL] [Abstract][Full Text] [Related]
10. Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies. Frentiu FD; Bernard GD; Sison-Mangus MP; Brower AV; Briscoe AD Mol Biol Evol; 2007 Sep; 24(9):2016-28. PubMed ID: 17609538 [TBL] [Abstract][Full Text] [Related]
11. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution. Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. Spaethe J; Briscoe AD J Exp Biol; 2005 Jun; 208(Pt 12):2347-61. PubMed ID: 15939775 [TBL] [Abstract][Full Text] [Related]
14. Adaptations to an extreme environment: retinal organisation and spectral properties of photoreceptors in Antarctic notothenioid fish. Pointer MA; Cheng CH; Bowmaker JK; Parry JW; Soto N; Jeffery G; Cowing JA; Hunt DM J Exp Biol; 2005 Jun; 208(Pt 12):2363-76. PubMed ID: 15939776 [TBL] [Abstract][Full Text] [Related]
15. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Chang BS; Crandall KA; Carulli JP; Hartl DL Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634 [TBL] [Abstract][Full Text] [Related]
16. The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri. Shand J; Davies WL; Thomas N; Balmer L; Cowing JA; Pointer M; Carvalho LS; Trezise AE; Collin SP; Beazley LD; Hunt DM J Exp Biol; 2008 May; 211(Pt 9):1495-503. PubMed ID: 18424684 [TBL] [Abstract][Full Text] [Related]
17. A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment. Parry JW; Poopalasundaram S; Bowmaker JK; Hunt DM Biochemistry; 2004 Jun; 43(25):8014-20. PubMed ID: 15209496 [TBL] [Abstract][Full Text] [Related]
18. Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Carleton KL; Parry JW; Bowmaker JK; Hunt DM; Seehausen O Mol Ecol; 2005 Dec; 14(14):4341-53. PubMed ID: 16313597 [TBL] [Abstract][Full Text] [Related]
19. Cloning and characterization of rod opsin cDNA from the Old World monkey, Macaca fascicularis. Nickells RW; Burgoyne CF; Quigley HA; Zack DJ Invest Ophthalmol Vis Sci; 1995 Jan; 36(1):72-82. PubMed ID: 7822161 [TBL] [Abstract][Full Text] [Related]