These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
503 related articles for article (PubMed ID: 1569581)
1. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli. Wikström PM; Lind LK; Berg DE; Björk GR J Mol Biol; 1992 Apr; 224(4):949-66. PubMed ID: 1569581 [TBL] [Abstract][Full Text] [Related]
2. A regulatory element within a gene of a ribosomal protein operon of Escherichia coli negatively controls expression by decreasing the translational efficiency. Wikström PM; Björk GR Mol Gen Genet; 1989 Nov; 219(3):381-9. PubMed ID: 2516239 [TBL] [Abstract][Full Text] [Related]
3. Functional analysis of the ffh-trmD region of the Escherichia coli chromosome by using reverse genetics. Persson BC; Bylund GO; Berg DE; Wikström PM J Bacteriol; 1995 Oct; 177(19):5554-60. PubMed ID: 7559342 [TBL] [Abstract][Full Text] [Related]
4. The nucleotide sequence of an Escherichia coli operon containing genes for the tRNA(m1G)methyltransferase, the ribosomal proteins S16 and L19 and a 21-K polypeptide. Byström AS; Hjalmarsson KJ; Wikström PM; Björk GR EMBO J; 1983; 2(6):899-905. PubMed ID: 6357787 [TBL] [Abstract][Full Text] [Related]
5. Differentially expressed trmD ribosomal protein operon of Escherichia coli is transcribed as a single polycistronic mRNA species. Byström AS; von Gabain A; Björk GR J Mol Biol; 1989 Aug; 208(4):575-86. PubMed ID: 2478711 [TBL] [Abstract][Full Text] [Related]
6. Translation of the first gene of the Escherichia coli unc operon. Selection of the start codon and control of initiation efficiency. Schneppe B; Deckers-Hebestreit G; McCarthy JE; Altendorf K J Biol Chem; 1991 Nov; 266(31):21090-8. PubMed ID: 1834655 [TBL] [Abstract][Full Text] [Related]
7. Noncoordinate translation-level regulation of ribosomal and nonribosomal protein genes in the Escherichia coli trmD operon. Wikström PM; Björk GR J Bacteriol; 1988 Jul; 170(7):3025-31. PubMed ID: 3290194 [TBL] [Abstract][Full Text] [Related]
8. Non-autogenous control of ribosomal protein synthesis from the trmD operon in Escherichia coli. Wikström PM; Byström AS; Björk GR J Mol Biol; 1988 Sep; 203(1):141-52. PubMed ID: 2460631 [TBL] [Abstract][Full Text] [Related]
9. Influences on gene expression in vivo by a Shine-Dalgarno sequence. Jin H; Zhao Q; Gonzalez de Valdivia EI; Ardell DH; Stenström M; Isaksson LA Mol Microbiol; 2006 Apr; 60(2):480-92. PubMed ID: 16573696 [TBL] [Abstract][Full Text] [Related]
10. An unstructured mRNA region and a 5' hairpin represent important elements of the E. coli translation initiation signal determined by using the bacteriophage T7 gene 1 translation start site. Helke A; Geisen RM; Vollmer M; Sprengart ML; Fuchs E Nucleic Acids Res; 1993 Dec; 21(24):5705-11. PubMed ID: 8284218 [TBL] [Abstract][Full Text] [Related]
11. A novel ribosome-associated protein is important for efficient translation in Escherichia coli. Bylund GO; Persson BC; Lundberg LA; Wikström PM J Bacteriol; 1997 Jul; 179(14):4567-74. PubMed ID: 9226267 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of translational coupling in Escherichia coli. Higher order structure in the atpHA mRNA acts as a conformational switch regulating the access of de novo initiating ribosomes. Rex G; Surin B; Besse G; Schneppe B; McCarthy JE J Biol Chem; 1994 Jul; 269(27):18118-27. PubMed ID: 7517937 [TBL] [Abstract][Full Text] [Related]
14. Messenger RNA secondary structure and translational coupling in the Escherichia coli operon encoding translation initiation factor IF3 and the ribosomal proteins, L35 and L20. Lesage P; Chiaruttini C; Graffe M; Dondon J; Milet M; Springer M J Mol Biol; 1992 Nov; 228(2):366-86. PubMed ID: 1453449 [TBL] [Abstract][Full Text] [Related]
15. Secondary structure of the leader transcript from the Escherichia coli S10 ribosomal protein operon. Shen P; Zengel JM; Lindahl L Nucleic Acids Res; 1988 Sep; 16(18):8905-24. PubMed ID: 3050893 [TBL] [Abstract][Full Text] [Related]
16. Post-transcriptional regulation of the str operon in Escherichia coli. Structural and mutational analysis of the target site for translational repressor S7. Saito K; Nomura M J Mol Biol; 1994 Jan; 235(1):125-39. PubMed ID: 8289236 [TBL] [Abstract][Full Text] [Related]
17. Novel Translation Initiation Regulation Mechanism in Escherichia coli ptrB Mediated by a 5'-Terminal AUG. Beck HJ; Janssen GR J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28484048 [TBL] [Abstract][Full Text] [Related]
18. Mutations affecting the Shine-Dalgarno sequences of the untranslated region of the Escherichia coli gltBDF operon. Velázquez L; Camarena L; Reyes JL; Bastarrachea F J Bacteriol; 1991 May; 173(10):3261-4. PubMed ID: 1673677 [TBL] [Abstract][Full Text] [Related]
19. Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction. de Smit MH; van Duin J J Mol Biol; 1994 Jan; 235(1):173-84. PubMed ID: 8289239 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA. Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]