BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 1569581)

  • 1. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli.
    Wikström PM; Lind LK; Berg DE; Björk GR
    J Mol Biol; 1992 Apr; 224(4):949-66. PubMed ID: 1569581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A regulatory element within a gene of a ribosomal protein operon of Escherichia coli negatively controls expression by decreasing the translational efficiency.
    Wikström PM; Björk GR
    Mol Gen Genet; 1989 Nov; 219(3):381-9. PubMed ID: 2516239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analysis of the ffh-trmD region of the Escherichia coli chromosome by using reverse genetics.
    Persson BC; Bylund GO; Berg DE; Wikström PM
    J Bacteriol; 1995 Oct; 177(19):5554-60. PubMed ID: 7559342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nucleotide sequence of an Escherichia coli operon containing genes for the tRNA(m1G)methyltransferase, the ribosomal proteins S16 and L19 and a 21-K polypeptide.
    Byström AS; Hjalmarsson KJ; Wikström PM; Björk GR
    EMBO J; 1983; 2(6):899-905. PubMed ID: 6357787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentially expressed trmD ribosomal protein operon of Escherichia coli is transcribed as a single polycistronic mRNA species.
    Byström AS; von Gabain A; Björk GR
    J Mol Biol; 1989 Aug; 208(4):575-86. PubMed ID: 2478711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translation of the first gene of the Escherichia coli unc operon. Selection of the start codon and control of initiation efficiency.
    Schneppe B; Deckers-Hebestreit G; McCarthy JE; Altendorf K
    J Biol Chem; 1991 Nov; 266(31):21090-8. PubMed ID: 1834655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncoordinate translation-level regulation of ribosomal and nonribosomal protein genes in the Escherichia coli trmD operon.
    Wikström PM; Björk GR
    J Bacteriol; 1988 Jul; 170(7):3025-31. PubMed ID: 3290194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-autogenous control of ribosomal protein synthesis from the trmD operon in Escherichia coli.
    Wikström PM; Byström AS; Björk GR
    J Mol Biol; 1988 Sep; 203(1):141-52. PubMed ID: 2460631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An unstructured mRNA region and a 5' hairpin represent important elements of the E. coli translation initiation signal determined by using the bacteriophage T7 gene 1 translation start site.
    Helke A; Geisen RM; Vollmer M; Sprengart ML; Fuchs E
    Nucleic Acids Res; 1993 Dec; 21(24):5705-11. PubMed ID: 8284218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. lacZ translation initiation mutations.
    Munson LM; Stormo GD; Niece RL; Reznikoff WS
    J Mol Biol; 1984 Aug; 177(4):663-83. PubMed ID: 6434747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of translational coupling in Escherichia coli. Higher order structure in the atpHA mRNA acts as a conformational switch regulating the access of de novo initiating ribosomes.
    Rex G; Surin B; Besse G; Schneppe B; McCarthy JE
    J Biol Chem; 1994 Jul; 269(27):18118-27. PubMed ID: 7517937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Messenger RNA secondary structure and translational coupling in the Escherichia coli operon encoding translation initiation factor IF3 and the ribosomal proteins, L35 and L20.
    Lesage P; Chiaruttini C; Graffe M; Dondon J; Milet M; Springer M
    J Mol Biol; 1992 Nov; 228(2):366-86. PubMed ID: 1453449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary structure of the leader transcript from the Escherichia coli S10 ribosomal protein operon.
    Shen P; Zengel JM; Lindahl L
    Nucleic Acids Res; 1988 Sep; 16(18):8905-24. PubMed ID: 3050893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-transcriptional regulation of the str operon in Escherichia coli. Structural and mutational analysis of the target site for translational repressor S7.
    Saito K; Nomura M
    J Mol Biol; 1994 Jan; 235(1):125-39. PubMed ID: 8289236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations affecting the Shine-Dalgarno sequences of the untranslated region of the Escherichia coli gltBDF operon.
    Velázquez L; Camarena L; Reyes JL; Bastarrachea F
    J Bacteriol; 1991 May; 173(10):3261-4. PubMed ID: 1673677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction.
    de Smit MH; van Duin J
    J Mol Biol; 1994 Jan; 235(1):173-84. PubMed ID: 8289239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of translation initiation on Escherichia coli gnd mRNA by formation of a long-range secondary structure involving the ribosome binding site and the internal complementary sequence.
    Chang JT; Green CB; Wolf RE
    J Bacteriol; 1995 Nov; 177(22):6560-7. PubMed ID: 7592434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis.
    Farwell MA; Roberts MW; Rabinowitz JC
    Mol Microbiol; 1992 Nov; 6(22):3375-83. PubMed ID: 1283001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translated translational operator in Escherichia coli. Auto-regulation in the infC-rpmI-rplT operon.
    Lesage P; Truong HN; Graffe M; Dondon J; Springer M
    J Mol Biol; 1990 Jun; 213(3):465-75. PubMed ID: 2191140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initiator AUGs Are Discriminated from Elongator AUGs Predominantly through mRNA Accessibility in C. crescentus.
    Ghosh A; Bharmal MM; Ghaleb AM; Nandana V; Schrader JM
    J Bacteriol; 2023 May; 205(5):e0042022. PubMed ID: 37092987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.