BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 15696166)

  • 1. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing.
    Harikrishnan KN; Chow MZ; Baker EK; Pal S; Bassal S; Brasacchio D; Wang L; Craig JM; Jones PL; Sif S; El-Osta A
    Nat Genet; 2005 Mar; 37(3):254-64. PubMed ID: 15696166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Drosophila Brahma (SWI/SNF) chromatin remodeling complex exhibits cell-type specific activation and repression functions.
    Marenda DR; Zraly CB; Dingwall AK
    Dev Biol; 2004 Mar; 267(2):279-93. PubMed ID: 15013794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SWI/SNF chromatin-remodeling factors induce changes in DNA methylation to promote transcriptional activation.
    Banine F; Bartlett C; Gunawardena R; Muchardt C; Yaniv M; Knudsen ES; Weissman BE; Sherman LS
    Cancer Res; 2005 May; 65(9):3542-7. PubMed ID: 15867346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct association between PU.1 and MeCP2 that recruits mSin3A-HDAC complex for PU.1-mediated transcriptional repression.
    Suzuki M; Yamada T; Kihara-Negishi F; Sakurai T; Oikawa T
    Oncogene; 2003 Nov; 22(54):8688-98. PubMed ID: 14647463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing for association between MeCP2 and the brahma-associated SWI/SNF chromatin-remodeling complex.
    Hu K; Nan X; Bird A; Wang W
    Nat Genet; 2006 Sep; 38(9):962-4; author reply 964-7. PubMed ID: 16940996
    [No Abstract]   [Full Text] [Related]  

  • 6. Reprogramming of the SWI/SNF complex for co-activation or co-repression in prohibitin-mediated estrogen receptor regulation.
    Zhang B; Chambers KJ; Faller DV; Wang S
    Oncogene; 2007 Nov; 26(50):7153-7. PubMed ID: 17486062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SWI/SNF complex is essential for NRSF-mediated suppression of neuronal genes in human nonsmall cell lung carcinoma cell lines.
    Watanabe H; Mizutani T; Haraguchi T; Yamamichi N; Minoguchi S; Yamamichi-Nishina M; Mori N; Kameda T; Sugiyama T; Iba H
    Oncogene; 2006 Jan; 25(3):470-9. PubMed ID: 16247481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of chromatin-immunopurified MeCP2-associated fragments.
    El-Osta A; Wolffe AP
    Biochem Biophys Res Commun; 2001 Dec; 289(3):733-7. PubMed ID: 11726209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methyl-CpG binding proteins in the nervous system.
    Fan G; Hutnick L
    Cell Res; 2005 Apr; 15(4):255-61. PubMed ID: 15857580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MeCP2: the chromatin connection and beyond.
    Zlatanova J
    Biochem Cell Biol; 2005 Jun; 83(3):251-62. PubMed ID: 15959553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brm transactivates the telomerase reverse transcriptase (TERT) gene and modulates the splicing patterns of its transcripts in concert with p54(nrb).
    Ito T; Watanabe H; Yamamichi N; Kondo S; Tando T; Haraguchi T; Mizutani T; Sakurai K; Fujita S; Izumi T; Isobe T; Iba H
    Biochem J; 2008 Apr; 411(1):201-9. PubMed ID: 18042045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation.
    Martinowich K; Hattori D; Wu H; Fouse S; He F; Hu Y; Fan G; Sun YE
    Science; 2003 Oct; 302(5646):890-3. PubMed ID: 14593184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA binding of methyl-CpG-binding protein MeCP2 in human MCF7 cells.
    Koch C; Strätling WH
    Biochemistry; 2004 May; 43(17):5011-21. PubMed ID: 15109260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myeloid transforming protein Evi1 interacts with methyl-CpG binding domain protein 3 and inhibits in vitro histone deacetylation by Mbd3/Mi-2/NuRD.
    Spensberger D; Vermeulen M; Le Guezennec X; Beekman R; van Hoven A; Bindels E; Stunnenberg H; Delwel R
    Biochemistry; 2008 Jun; 47(24):6418-26. PubMed ID: 18500823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian chromatin remodeling complex SWI/SNF is essential for enhanced expression of the albumin gene during liver development.
    Inayoshi Y; Miyake K; Machida Y; Kaneoka H; Terajima M; Dohda T; Takahashi M; Iijima S
    J Biochem; 2006 Feb; 139(2):177-88. PubMed ID: 16452305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methyl deficiency causes reduction of the methyl-CpG-binding protein, MeCP2, in rat liver.
    Esfandiari F; Green R; Cotterman RF; Pogribny IP; James SJ; Miller JW
    Carcinogenesis; 2003 Dec; 24(12):1935-40. PubMed ID: 12949043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional co-activator activity of SYT is negatively regulated by BRM and Brg1.
    Ishida M; Tanaka S; Ohki M; Ohta T
    Genes Cells; 2004 May; 9(5):419-28. PubMed ID: 15147271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters.
    Wischnewski F; Friese O; Pantel K; Schwarzenbach H
    Mol Cancer Res; 2007 Jul; 5(7):749-59. PubMed ID: 17634428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repression of GR-mediated expression of the tryptophan oxygenase gene by the SWI/SNF complex during liver development.
    Inayoshi Y; Kaneoka H; Machida Y; Terajima M; Dohda T; Miyake K; Iijima S
    J Biochem; 2005 Oct; 138(4):457-65. PubMed ID: 16272140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association by guilt: identification of DLX5 as a target for MeCP2 provides a molecular link between genomic imprinting and Rett syndrome.
    Bapat S; Galande S
    Bioessays; 2005 Jul; 27(7):676-80. PubMed ID: 15954098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.