These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15696275)

  • 1. Effects of immobilization on a FRET immunosensor for the detection of myocardial infarction.
    Grant SA; Pierce ME; Lichlyter DJ; Grant DA
    Anal Bioanal Chem; 2005 Mar; 381(5):1012-8. PubMed ID: 15696275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a FRET based fiber-optic biosensor for early detection of myocardial infarction.
    Pierce M; Grant S
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2098-101. PubMed ID: 17272136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium.
    Ko S; Grant SA
    Biosens Bioelectron; 2006 Jan; 21(7):1283-90. PubMed ID: 16040238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a novel FRET immunosensor technique.
    Lichlyter DJ; Grant SA; Soykan O
    Biosens Bioelectron; 2003 Nov; 19(3):219-26. PubMed ID: 14611757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene quantum dots FRET based sensor for early detection of heart attack in human.
    Bhatnagar D; Kumar V; Kumar A; Kaur I
    Biosens Bioelectron; 2016 May; 79():495-9. PubMed ID: 26748366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence immunosensor for cardiac troponin T based on Förster resonance energy transfer (FRET) between carbon dot and MoS
    Gogoi S; Khan R
    Phys Chem Chem Phys; 2018 Jun; 20(24):16501-16509. PubMed ID: 29878021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics.
    Zadran S; Standley S; Wong K; Otiniano E; Amighi A; Baudry M
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):895-902. PubMed ID: 23053099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-sensitivity quantum dot-based fluorescence resonance energy transfer bioanalysis by capillary electrophoresis.
    Li YQ; Wang JH; Zhang HL; Yang J; Guan LY; Chen H; Luo QM; Zhao YD
    Biosens Bioelectron; 2010 Feb; 25(6):1283-9. PubMed ID: 19914053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.
    Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ
    Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack.
    Bhatnagar D; Kaur I; Kumar A
    Int J Biol Macromol; 2017 Feb; 95():505-510. PubMed ID: 27865959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A homogeneous immunosensor for AFB1 detection based on FRET between different-sized quantum dots.
    Xu W; Xiong Y; Lai W; Xu Y; Li C; Xie M
    Biosens Bioelectron; 2014 Jun; 56():144-50. PubMed ID: 24487101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors.
    Ai HW; Hazelwood KL; Davidson MW; Campbell RE
    Nat Methods; 2008 May; 5(5):401-3. PubMed ID: 18425137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viability of a FRET dual binding technique to detect calpastatin.
    Grant SA; Stringer RC; Studer S; Lichlyter D; Lorenzen CL
    Biosens Bioelectron; 2005 Sep; 21(3):438-44. PubMed ID: 16076433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Chen L; Algar WR; Tavares AJ; Krull UJ
    Anal Bioanal Chem; 2011 Jan; 399(1):133-41. PubMed ID: 20978748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing the cationic conjugated polymer-sensitized fluorescent signal of dye labeled oligonucleotide for biosensor applications.
    Pu KY; Liu B
    Biosens Bioelectron; 2009 Jan; 24(5):1067-73. PubMed ID: 18760913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved fluorescence resonance energy transfer-based lateral flow immunoassay using a raspberry-type europium particle and a single membrane for the detection of cardiac troponin I.
    Lee KW; Kim KR; Chun HJ; Jeong KY; Hong DK; Lee KN; Yoon HC
    Biosens Bioelectron; 2020 Sep; 163():112284. PubMed ID: 32421632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer.
    Peng J; Wang Y; Wang J; Zhou X; Liu Z
    Biosens Bioelectron; 2011 Oct; 28(1):414-20. PubMed ID: 21852101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational tool for designing FRET protein biosensors by rigid-body sampling of their conformational space.
    Pham E; Chiang J; Li I; Shum W; Truong K
    Structure; 2007 May; 15(5):515-23. PubMed ID: 17502097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio.
    Kim H; Ng CY; Algar WR
    Langmuir; 2014 May; 30(19):5676-85. PubMed ID: 24810095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.