BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 15696374)

  • 1. The origin of dihydroorotate dehydrogenase genes of kinetoplastids, with special reference to their biological significance and adaptation to anaerobic, parasitic conditions.
    Annoura T; Nara T; Makiuchi T; Hashimoto T; Aoki T
    J Mol Evol; 2005 Jan; 60(1):113-27. PubMed ID: 15696374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dihydroorotate dehydrogenase arises from novel fused gene product with aspartate carbamoyltransferase in Bodo saliens.
    Annoura T; Sariego I; Nara T; Makiuchi T; Fujimura T; Taka H; Mineki R; Murayama K; Aoki T
    Biochem Biophys Res Commun; 2007 Jun; 358(1):253-8. PubMed ID: 17475213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic diversity and kinetic properties of Trypanosoma cruzi dihydroorotate dehydrogenase isoforms.
    Sariego I; Annoura T; Nara T; Hashimoto M; Tsubouchi A; Iizumi K; Makiuchi T; Murata E; Kita K; Aoki T
    Parasitol Int; 2006 Mar; 55(1):11-6. PubMed ID: 16172019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence of multiple, independent gene fusion events for the fifth and sixth enzymes of pyrimidine biosynthesis in different eukaryotic groups.
    Makiuchi T; Nara T; Annoura T; Hashimoto T; Aoki T
    Gene; 2007 Jun; 394(1-2):78-86. PubMed ID: 17383832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with substrates and products: atomic resolution insights into mechanisms of dihydroorotate oxidation and fumarate reduction.
    Inaoka DK; Sakamoto K; Shimizu H; Shiba T; Kurisu G; Nara T; Aoki T; Kita K; Harada S
    Biochemistry; 2008 Oct; 47(41):10881-91. PubMed ID: 18808149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the dihydroorotate dehydrogenase as a soluble fumarate reductase in Trypanosoma cruzi.
    Takashima E; Inaoka DK; Osanai A; Nara T; Odaka M; Aoki T; Inaka K; Harada S; Kita K
    Mol Biochem Parasitol; 2002 Jul; 122(2):189-200. PubMed ID: 12106873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary implications of the mosaic pyrimidine-biosynthetic pathway in eukaryotes.
    Nara T; Hshimoto T; Aoki T
    Gene; 2000 Oct; 257(2):209-22. PubMed ID: 11080587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary analysis of synteny and gene fusion for pyrimidine biosynthetic enzymes in Euglenozoa: an extraordinary gap between kinetoplastids and diplonemids.
    Makiuchi T; Annoura T; Hashimoto T; Murata E; Aoki T; Nara T
    Protist; 2008 Jul; 159(3):459-70. PubMed ID: 18394957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenomic analysis of kinetoplastids supports that trypanosomatids arose from within bodonids.
    Deschamps P; Lara E; Marande W; López-García P; Ekelund F; Moreira D
    Mol Biol Evol; 2011 Jan; 28(1):53-8. PubMed ID: 21030427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory action of marine algae extracts on the Trypanosoma cruzi dihydroorotate dehydrogenase activity and on the protozoan growth in mammalian cells.
    Nara T; Kamei Y; Tsubouchi A; Annoura T; Hirota K; Iizumi K; Dohmoto Y; Ono T; Aoki T
    Parasitol Int; 2005 Mar; 54(1):59-64. PubMed ID: 15710552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbamoyl-phosphate synthetase II in kinetoplastids.
    Nara T; Gao G; Yamasaki H; Nakajima-Shimada J; Aoki T
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):462-8. PubMed ID: 9748664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and molecular characterization of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase from Toxoplasma gondii.
    Hortua Triana MA; Huynh MH; Garavito MF; Fox BA; Bzik DJ; Carruthers VB; Löffler M; Zimmermann BH
    Mol Biochem Parasitol; 2012 Aug; 184(2):71-81. PubMed ID: 22580100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular biology and biochemistry of malarial parasite pyrimidine biosynthetic pathway.
    Krungkrai J; Prapunwatana P; Wichitkul C; Reungprapavut S; Krungkrai SR; Horii T
    Southeast Asian J Trop Med Public Health; 2003; 34 Suppl 2():32-43. PubMed ID: 19230569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae.
    Hall C; Brachat S; Dietrich FS
    Eukaryot Cell; 2005 Jun; 4(6):1102-15. PubMed ID: 15947202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists.
    Rotte C; Stejskal F; Zhu G; Keithly JS; Martin W
    Mol Biol Evol; 2001 May; 18(5):710-20. PubMed ID: 11319255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary history of kinetoplastids and their kinetoplasts.
    Simpson AG; Lukes J; Roger AJ
    Mol Biol Evol; 2002 Dec; 19(12):2071-83. PubMed ID: 12446799
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Zhao E; Jiang X; Cui H
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30200251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and transcript mapping of the dihydroorotate dehydrogenase dhod locus of Drosophila melanogaster.
    Jones WK; Kirkpatrick R; Rawls JM
    Mol Gen Genet; 1989 Nov; 219(3):397-403. PubMed ID: 2482933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early evolution within kinetoplastids (euglenozoa), and the late emergence of trypanosomatids.
    Simpson AG; Gill EE; Callahan HA; Litaker RW; Roger AJ
    Protist; 2004 Dec; 155(4):407-22. PubMed ID: 15648721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic affinity of mitochondria of Euglena gracilis and kinetoplastids using cytochrome oxidase I and hsp60.
    Yasuhira S; Simpson L
    J Mol Evol; 1997 Mar; 44(3):341-7. PubMed ID: 9060401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.