These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 15696587)

  • 21. A model to simultaneously evaluate the compressibility and compactibility of a powder based on the compression ratio.
    Yu Y; Zhao L; Lin X; Wang Y; Feng Y
    Int J Pharm; 2020 Mar; 577():119023. PubMed ID: 31935469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of compaction pressure, speed and punch head profile on the ultrasonically-extracted physical properties of pharmaceutical compacts.
    Xu X; Coskunturk Y; Dave VS; Kuriyilel JV; Wright MF; Dave RH; Cetinkaya C
    Int J Pharm; 2020 Feb; 575():118993. PubMed ID: 31884061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of temperature increase during the tableting of pharmaceutical materials.
    Cespi M; Bonacucina G; Casettari L; Ronchi S; Palmieri GF
    Int J Pharm; 2013 May; 448(1):320-6. PubMed ID: 23518365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tableting Properties and Compression Models of Labisia pumila Tablets.
    Etti CJ; Yusof YA; Chin NL; Mohd Tahir S
    J Diet Suppl; 2017 Mar; 14(2):132-145. PubMed ID: 27487244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tricalcium citrate - a new brittle tableting excipient for direct compression and dry granulation with enormous hardness yield.
    Hagelstein V; Gerhart M; Wagner KG
    Drug Dev Ind Pharm; 2018 Oct; 44(10):1631-1641. PubMed ID: 29916271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of particle size on the application of compression and compaction models for tableting.
    Wünsch I; Finke JH; John E; Juhnke M; Kwade A
    Int J Pharm; 2021 Apr; 599():120424. PubMed ID: 33647406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of material properties and speed of compression on microbial survival and tensile strength in diclofenac tablet formulations.
    Ayorinde JO; Itiola OA; Odeniyi MA
    Arch Pharm Res; 2013 Mar; 36(3):273-81. PubMed ID: 23471558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degree of compression as a potential process control tool of tablet tensile strength.
    Nordström J; Alderborn G
    Pharm Dev Technol; 2011; 16(6):599-608. PubMed ID: 20649411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Molecular-Weight Hypromellose from Three Different Suppliers: Effects of Compression Speed, Tableting Equipment, and Moisture on the Compaction.
    Grdešič P; Paudel A; German Ilić I
    AAPS PharmSciTech; 2020 Jul; 21(6):203. PubMed ID: 32699970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of tableting properties measured with a multi-functional compaction instrument for several pharmaceutical excipients and actual tablet formulations.
    Osamura T; Takeuchi Y; Onodera R; Kitamura M; Takahashi Y; Tahara K; Takeuchi H
    Int J Pharm; 2016 Aug; 510(1):195-202. PubMed ID: 27184101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Matrix tablets of carrageenans. I. A compaction study.
    Picker KM
    Drug Dev Ind Pharm; 1999 Mar; 25(3):329-37. PubMed ID: 10071826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Particle size distribution and evolution in tablet structure during and after compaction.
    Fichtner F; Rasmuson A; Alderborn G
    Int J Pharm; 2005 Mar; 292(1-2):211-25. PubMed ID: 15725568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the physical-mechanical properties of Eudragit(®) RS PO/RL PO and their mixtures with common pharmaceutical excipients.
    Dave VS; Fahmy RM; Hoag SW
    Drug Dev Ind Pharm; 2013 Jul; 39(7):1113-25. PubMed ID: 22994144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of the drug deformation behaviour on the predictability of compressibility and compactibility of binary mixtures.
    Wünsch I; Finke JH; John E; Juhnke M; Kwade A
    Int J Pharm; 2022 Oct; 626():122117. PubMed ID: 35985527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of surface energy on powder compactibility.
    Fichtner F; Mahlin D; Welch K; Gaisford S; Alderborn G
    Pharm Res; 2008 Dec; 25(12):2750-9. PubMed ID: 18548337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Microhardness of ribbons and mercury porosimetry measurements of tablets.
    Freitag F; Reincke K; Runge J; Grellmann W; Kleinebudde P
    Eur J Pharm Sci; 2004 Jul; 22(4):325-33. PubMed ID: 15196589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of Air Entrapment in Tableting: An Approximate Solution.
    Zavaliangos A; Katz JM; Daurio D; Johnson M; Pirjanian A; Alvarez-Nunez F
    J Pharm Sci; 2017 Dec; 106(12):3604-3612. PubMed ID: 28919383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The evolution of granule fracture strength as a function of impeller tip speed and granule size for a novel reverse-phase wet granulation process.
    Wade JB; Martin GP; Long DF
    Int J Pharm; 2015 Jul; 488(1-2):95-101. PubMed ID: 25888799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tableting performance of various mannitol and lactose grades assessed by compaction simulation and chemometrical analysis.
    Paul S; Tajarobi P; Boissier C; Sun CC
    Int J Pharm; 2019 Jul; 566():24-31. PubMed ID: 31095984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early detection of capping risk in pharmaceutical compacts.
    Xu X; Vallabh CKP; Hoag SW; Dave VS; Cetinkaya C
    Int J Pharm; 2018 Dec; 553(1-2):338-348. PubMed ID: 30367987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.