These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation. Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED J Am Chem Soc; 2006 Apr; 128(14):4685-93. PubMed ID: 16594705 [TBL] [Abstract][Full Text] [Related]
3. The case of the missing ring: radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis. Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED J Am Chem Soc; 2007 Mar; 129(11):3118-26. PubMed ID: 17326633 [TBL] [Abstract][Full Text] [Related]
4. Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis. Wood TI; Barondeau DP; Hitomi C; Kassmann CJ; Tainer JA; Getzoff ED Biochemistry; 2005 Dec; 44(49):16211-20. PubMed ID: 16331981 [TBL] [Abstract][Full Text] [Related]
5. Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation. Rosenow MA; Patel HN; Wachter RM Biochemistry; 2005 Jun; 44(23):8303-11. PubMed ID: 15938620 [TBL] [Abstract][Full Text] [Related]
6. Structural evidence for an enolate intermediate in GFP fluorophore biosynthesis. Barondeau DP; Tainer JA; Getzoff ED J Am Chem Soc; 2006 Mar; 128(10):3166-8. PubMed ID: 16522096 [TBL] [Abstract][Full Text] [Related]
7. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation. Tubbs JL; Tainer JA; Getzoff ED Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155 [TBL] [Abstract][Full Text] [Related]
8. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Rosenow MA; Huffman HA; Phail ME; Wachter RM Biochemistry; 2004 Apr; 43(15):4464-72. PubMed ID: 15078092 [TBL] [Abstract][Full Text] [Related]
10. Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Barondeau DP; Putnam CD; Kassmann CJ; Tainer JA; Getzoff ED Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12111-6. PubMed ID: 14523232 [TBL] [Abstract][Full Text] [Related]
11. Backbone dynamics of green fluorescent protein and the effect of histidine 148 substitution. Seifert MH; Georgescu J; Ksiazek D; Smialowski P; Rehm T; Steipe B; Holak TA Biochemistry; 2003 Mar; 42(9):2500-12. PubMed ID: 12614144 [TBL] [Abstract][Full Text] [Related]
12. Structural and spectral response of Aequorea victoria green fluorescent proteins to chromophore fluorination. Pal PP; Bae JH; Azim MK; Hess P; Friedrich R; Huber R; Moroder L; Budisa N Biochemistry; 2005 Mar; 44(10):3663-72. PubMed ID: 15751943 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic diversity of red fluorescence acquisition by GFP-like proteins. Wachter RM; Watkins JL; Kim H Biochemistry; 2010 Sep; 49(35):7417-27. PubMed ID: 20666493 [TBL] [Abstract][Full Text] [Related]
14. The mechanism of cyclization in chromophore maturation of green fluorescent protein: a theoretical study. Ma Y; Sun Q; Zhang H; Peng L; Yu JG; Smith SC J Phys Chem B; 2010 Jul; 114(29):9698-705. PubMed ID: 20593847 [TBL] [Abstract][Full Text] [Related]
15. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Ai HW; Shaner NC; Cheng Z; Tsien RY; Campbell RE Biochemistry; 2007 May; 46(20):5904-10. PubMed ID: 17444659 [TBL] [Abstract][Full Text] [Related]
16. Structure and reactivity of the chromophore of a GFP-like chromoprotein from Condylactis gigantea. Pakhomov AA; Pletneva NV; Balashova TA; Martynov VI Biochemistry; 2006 Jun; 45(23):7256-64. PubMed ID: 16752914 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile. Schwede TF; Rétey J; Schulz GE Biochemistry; 1999 Apr; 38(17):5355-61. PubMed ID: 10220322 [TBL] [Abstract][Full Text] [Related]
18. Mutagenic stabilization of the photocycle intermediate of green fluorescent protein (GFP). Wiehler J; Jung G; Seebacher C; Zumbusch A; Steipe B Chembiochem; 2003 Nov; 4(11):1164-71. PubMed ID: 14613107 [TBL] [Abstract][Full Text] [Related]
19. Stepwise Simulation of 3,5-Dihydro-5-methylidene-4H-imidazol-4-one (MIO) Biogenesis in Histidine Ammonia-lyase. Sánchez-Murcia PA; Bueren-Calabuig JA; Camacho-Artacho M; Cortés-Cabrera Á; Gago F Biochemistry; 2016 Oct; 55(41):5854-5864. PubMed ID: 27682658 [TBL] [Abstract][Full Text] [Related]
20. Structural characterization of a thiazoline-containing chromophore in an orange fluorescent protein, monomeric Kusabira Orange. Kikuchi A; Fukumura E; Karasawa S; Mizuno H; Miyawaki A; Shiro Y Biochemistry; 2008 Nov; 47(44):11573-80. PubMed ID: 18844376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]