These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 15697343)

  • 41. Direct measurement of thermophoretic forces.
    Helden L; Eichhorn R; Bechinger C
    Soft Matter; 2015 Mar; 11(12):2379-86. PubMed ID: 25673057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Laser-induced thermophoresis of individual particles in a viscous liquid.
    Schermer RT; Olson CC; Coleman JP; Bucholtz F
    Opt Express; 2011 May; 19(11):10571-86. PubMed ID: 21643311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermophoresis in liquids: a molecular dynamics simulation study.
    Han M
    J Colloid Interface Sci; 2005 Apr; 284(1):339-48. PubMed ID: 15752822
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion in a viscous compressible fluid.
    Felderhof BU
    J Chem Phys; 2005 Nov; 123(18):184903. PubMed ID: 16292935
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Velocity distribution for a two-dimensional sheared granular flow.
    Bose M; Kumaran V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061301. PubMed ID: 15244554
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the Motion of Carbon Nanotube Clusters near Optical Fiber Tips: Thermophoresis, Radiative Pressure, and Convection Effects.
    Vélez-Cordero JR; Hernández-Cordero J
    Langmuir; 2015 Sep; 31(36):10066-75. PubMed ID: 26309145
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Water thermophoresis in carbon nanotubes: the interplay between thermophoretic and friction forces.
    Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2018 Jan; 20(5):3672-3677. PubMed ID: 29344599
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Converging shocks in elastic-plastic solids.
    Ortega AL; Lombardini M; Hill DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056307. PubMed ID: 22181498
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Short-time dynamics of a tracer in an ideal gas.
    Nakai F; Masubuchi Y; Uneyama T
    Phys Rev E; 2020 Sep; 102(3-1):032104. PubMed ID: 33075902
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal fluctuations of hydrodynamic flows in nanochannels.
    Detcheverry F; Bocquet L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012106. PubMed ID: 23944413
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Minimal model for acoustic forces on Brownian particles.
    Balboa Usabiaga F; Delgado-Buscalioni R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063304. PubMed ID: 24483581
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiscale modeling and simulation for polymer melt flows between parallel plates.
    Yasuda S; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036308. PubMed ID: 20365855
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diffusiophoretic motion of a charged spherical particle in a nanopore.
    Lee SY; Yalcin SE; Joo SW; Baysal O; Qian S
    J Phys Chem B; 2010 May; 114(19):6437-46. PubMed ID: 20426445
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials.
    Zhao C; Yang C
    Electrophoresis; 2010 Mar; 31(5):973-9. PubMed ID: 20191559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stability analysis of the rotor of ultrasonic motor driving fluid directly.
    Changliang X; Mengli W
    Ultrasonics; 2005 Jun; 43(7):596-601. PubMed ID: 15950035
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamics and friction of a large colloidal particle in a bath of hard spheres: Langevin dynamics simulations and hydrodynamic description.
    Orts F; Ortega G; Garzón EM; Fuchs M; Puertas AM
    Phys Rev E; 2020 May; 101(5-1):052607. PubMed ID: 32575230
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of particle-wall interactions during particle free fall.
    Chein R; Liao W
    J Colloid Interface Sci; 2005 Aug; 288(1):104-13. PubMed ID: 15927568
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluid particle diffusion in a semidilute suspension of model micro-organisms.
    Ishikawa T; Locsei JT; Pedley TJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021408. PubMed ID: 20866810
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Lagrangian Stochastic Model for Heavy Particle Deposition.
    Reynolds AM
    J Colloid Interface Sci; 1999 Jul; 215(1):85-91. PubMed ID: 10362476
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.