These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15697365)

  • 1. Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection.
    Hosokawa C; Yoshikawa H; Masuhara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061410. PubMed ID: 15697365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy.
    Hosokawa C; Yoshikawa H; Masuhara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021408. PubMed ID: 16196566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser trapping chemistry: from polymer assembly to amino acid crystallization.
    Sugiyama T; Yuyama K; Masuhara H
    Acc Chem Res; 2012 Nov; 45(11):1946-54. PubMed ID: 23094993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface.
    Wang SF; Kudo T; Yuyama KI; Sugiyama T; Masuhara H
    Langmuir; 2016 Nov; 32(47):12488-12496. PubMed ID: 27606971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enumerating virus-like particles in an optically concentrated suspension by fluorescence correlation spectroscopy.
    Hu Y; Cheng X; Daniel Ou-Yang H
    Biomed Opt Express; 2013; 4(9):1646-53. PubMed ID: 24049685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy.
    Doose S; Tsay JM; Pinaud F; Weiss S
    Anal Chem; 2005 Apr; 77(7):2235-42. PubMed ID: 15801758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential energy profile of colloidal nanoparticles in optical confinement.
    Fu J; Zhan Q; Lim MY; Li Z; Ou-Yang HD
    Opt Lett; 2013 Oct; 38(20):3995-8. PubMed ID: 24321903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle Assembling Dynamics Induced by Pulsed Optical Force.
    Jui-Kai Chen J; Chiang WY; Kudo T; Usman A; Masuhara H
    Chem Rec; 2021 Jun; 21(6):1473-1488. PubMed ID: 33661570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical trapping of NaYF4:Er3+,Yb3+ upconverting fluorescent nanoparticles.
    Haro-González P; del Rosal B; Maestro LM; Rodríguez EM; Naccache R; Capobianco JA; Dholakia K; Solé JG; Jaque D
    Nanoscale; 2013 Dec; 5(24):12192-9. PubMed ID: 24132346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whirl-enhanced continuous wave laser trapping of particles.
    Bartkiewicz S; Miniewicz A
    Phys Chem Chem Phys; 2015 Jan; 17(2):1077-83. PubMed ID: 25412568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.
    Nair N; Wentzel N; Jayaraman A
    J Chem Phys; 2011 May; 134(19):194906. PubMed ID: 21599087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical trapping of colloidal particles and cells by focused evanescent fields using conical lenses.
    Yoon YZ; Cicuta P
    Opt Express; 2010 Mar; 18(7):7076-84. PubMed ID: 20389728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and Analysis of Single Optically Trapped Gold Nanoparticles Using Spatial Modulation Spectroscopy.
    Devadas MS; Li Z; Hartland GV
    J Phys Chem Lett; 2014 Aug; 5(16):2910-5. PubMed ID: 26278098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single molecule nanoparticles of the conjugated polymer MEH-PPV, preparation and characterization by near-field scanning optical microscopy.
    Szymanski C; Wu C; Hooper J; Salazar MA; Perdomo A; Dukes A; McNeill J
    J Phys Chem B; 2005 May; 109(18):8543-6. PubMed ID: 16852006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible assembly of gold nanoparticles confined in an optical microcage.
    Yoshikawa H; Matsui T; Masuhara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061406. PubMed ID: 15697361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bragg scattering and Brownian motion dynamics in optically induced crystals of submicron particles.
    Sapiro RE; Slama BN; Raithel G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052311. PubMed ID: 23767544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and calibration of an optical trap on a fluorescence optical microscope.
    Lee WM; Reece PJ; Marchington RF; Metzger NK; Dholakia K
    Nat Protoc; 2007; 2(12):3226-38. PubMed ID: 18079723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating axial diffusion in cylindrical pores using confocal single-particle fluorescence correlation spectroscopy.
    Chen F; Neupane B; Li P; Su W; Wang G
    Electrophoresis; 2016 Aug; 37(15-16):2129-38. PubMed ID: 27196052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra.
    Pan YL; Hill SC; Coleman M
    Opt Express; 2012 Feb; 20(5):5325-34. PubMed ID: 22418339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal nanoparticles trapped by liquid-crystal defect lines: a lattice Monte Carlo simulation.
    Jose R; Skačej G; Sastry VS; Žumer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032503. PubMed ID: 25314461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.