These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15697367)

  • 1. Shear-induced particle rotation and its effect on electrorheological and dielectric properties in cellulose suspension.
    Misono Y; Negita K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061412. PubMed ID: 15697367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric and electrical properties of electrorheological carbon suspensions.
    Negita K; Misono Y; Yamaguchi T; Shinagawa J
    J Colloid Interface Sci; 2008 May; 321(2):452-8. PubMed ID: 18342876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrorheological Response and Structure Growth of Colloidal Silica Suspensions.
    Satoh T; Ashitaka T; Orihara S; Saimoto Y; Konno M
    J Colloid Interface Sci; 2001 Feb; 234(1):19-23. PubMed ID: 11161485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between Generated Shear Stress and Generated Permittivity for the Electrorheological Response of Colloidal Silica Suspensions.
    Saimoto Y; Satoh T; Konno M
    J Colloid Interface Sci; 1999 Nov; 219(1):135-143. PubMed ID: 10527579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Interfacial Polarization-Induced Electrorheological Effect.
    Hao T
    J Colloid Interface Sci; 1998 Oct; 206(1):240-246. PubMed ID: 9761649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced dielectric polarization and electro-responsive characteristic of graphene oxide-wrapped titania microspheres.
    Yin J; Shui Y; Dong Y; Zhao X
    Nanotechnology; 2014 Jan; 25(4):045702. PubMed ID: 24394540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of particle size on shear behavior of amine-group-immobilized polyacrylonitrile dispersed suspension under electric field.
    Ko YG; Choi US; Chun YJ
    J Colloid Interface Sci; 2009 Jul; 335(2):183-8. PubMed ID: 19409572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields.
    Tian Y; Zhang M; Jiang J; Pesika N; Zeng H; Israelachvili J; Meng Y; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011401. PubMed ID: 21405692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field.
    Ko YG; Lee HJ; Chun YJ; Choi US; Yoo KP
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1122-30. PubMed ID: 23336370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of the Dielectric Properties of Dispersed Particles with the Electrorheological Effect.
    Hao T; Xu Z; Xu Y
    J Colloid Interface Sci; 1997 Jun; 190(2):334-40. PubMed ID: 9241175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient response of an electrorheological fluid under square-wave electric field excitation.
    Tian Y; Li C; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response.
    Liu YD; Quan X; Hwang B; Kwon YK; Choi HJ
    Langmuir; 2014 Feb; 30(7):1729-34. PubMed ID: 24512519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation.
    Ko YG; Shin SS; Choi US; Park YS; Woo JW
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions.
    Tilki T; Yavuz M; Karabacak C; Cabuk M; Ulutürk M
    Carbohydr Res; 2010 Mar; 345(5):672-9. PubMed ID: 20116050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-Switched Positive/Negative Electrorheological Effect in Tungsten Oxide Suspensions.
    Agafonov AV; Kraev AS; Kusova TV; Evdokimova OL; Ivanova OS; Baranchikov AE; Shekunova TO; Kozyukhin SA
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31540041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic effects on nonlinear alternating current responses in electrorheological fluids.
    Tian WJ; Huang JP; Yu KW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031408. PubMed ID: 16605525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline.
    Lu J; Zhao X
    J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotation of the leaky dielectric particle in a rotating electric field.
    Dolinsky Y; Elperin T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026611. PubMed ID: 17358440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of the frequency dependence of the electrorheological effect.
    Lan Y; Huang CK; Men S; Lu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021507. PubMed ID: 15447496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.