These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1569738)

  • 41. Novel planar glucose biosensors for continuous monitoring use.
    Ricci F; Moscone D; Tuta CS; Palleschi G; Amine A; Poscia A; Valgimigli F; Messeri D
    Biosens Bioelectron; 2005 Apr; 20(10):1993-2000. PubMed ID: 15741068
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modification of the sensitivity of glucose sensor implanted into subcutaneous tissue.
    Thomé-Duret V; Gangnerau MN; Zhang Y; Wilson GS; Reach G
    Diabetes Metab; 1996 Jun; 22(3):174-8. PubMed ID: 8697304
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A fully implantable subcutaneous glucose sensor array: enhanced accuracy from multiple sensing units and a median-based algorithm.
    Ward WK; Casey HM; Quinn MJ; Federiuk IF; Wood MD
    Diabetes Technol Ther; 2003; 5(6):943-52. PubMed ID: 14709196
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Implantable electrocatalytic glucose sensor.
    Lager W; von Lucadou I; Nischik H; Nowak T; Preidel W; Ruprecht L; Stanzel MJ; Tegeder V
    Horm Metab Res; 1994 Nov; 26(11):526-30. PubMed ID: 7875647
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calibration in dogs of a subcutaneous miniaturized glucose sensor using a glucose meter for blood glucose determination.
    Poitout V; Moatti-Sirat D; Reach G
    Biosens Bioelectron; 1992; 7(8):587-92. PubMed ID: 1457093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemistry in diabetes management.
    Heller A; Feldman B
    Acc Chem Res; 2010 Jul; 43(7):963-73. PubMed ID: 20384299
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calibration of a wearable glucose sensor.
    Schmidt FJ; Aalders AL; Schoonen AJ; Doorenbos H
    Int J Artif Organs; 1992 Jan; 15(1):55-61. PubMed ID: 1551730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Miniature amperometric self-powered continuous glucose sensor with linear response.
    Liu Z; Cho B; Ouyang T; Feldman B
    Anal Chem; 2012 Apr; 84(7):3403-9. PubMed ID: 22424266
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A percutaneous device to study glucose kinetics in subcutaneous tissue fluid.
    Gerritsen M; Lutterman JA; Jansen JA
    J Mater Sci Mater Med; 2000 Aug; 11(8):499-503. PubMed ID: 15348000
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Implantation of non-toxic materials from glucose sensors: evidence for specific antibodies detected by ELISA.
    Schlosser M; Ziegler B; Abel P; Fischer U; Ziegler M
    Horm Metab Res; 1994 Nov; 26(11):534-7. PubMed ID: 7875649
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration.
    Updike SJ; Shults MC; Gilligan BJ; Rhodes RK
    Diabetes Care; 2000 Feb; 23(2):208-14. PubMed ID: 10868833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A miniaturized Nafion-based glucose sensor: in vitro and in vivo evaluation in dogs.
    Moussy F; Harrison DJ; Rajotte RV
    Int J Artif Organs; 1994 Feb; 17(2):88-94. PubMed ID: 8039946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model.
    Åm MK; Kölle K; Fougner AL; Dirnena-Fusini I; Bösch PC; Ellingsen R; Hjelme DR; Stavdahl Ø; Carlsen SM; Christiansen SC
    PLoS One; 2018; 13(10):e0205447. PubMed ID: 30300416
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An investigation of long-term performance of minimally invasive glucose biosensors.
    Yu B; Ju Y; West L; Moussy Y; Moussy F
    Diabetes Technol Ther; 2007 Jun; 9(3):265-75. PubMed ID: 17561797
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit.
    Poitout V; Moatti-Sirat D; Reach G; Zhang Y; Wilson GS; Lemonnier F; Klein JC
    Diabetologia; 1993 Jul; 36(7):658-63. PubMed ID: 8359584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Continuous monitoring of subcutaneous glucose concentration using implanted enzyme electrodes].
    Müller A; Abel P; Fischer U
    Biomed Biochim Acta; 1986; 45(6):769-77. PubMed ID: 3753481
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Amperometric glucose sensor: short-term, in vivo test.
    Lewandowski JJ; Szczepańska-Sadowska E; Krzymień J; Nałecz M
    Diabetes Care; 1982; 5(3):238-44. PubMed ID: 7172991
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of inflammatory cells and serum on the performance of implantable glucose sensors.
    Gerritsen M; Jansen JA; Kros A; Vriezema DM; Sommerdijk NA; Nolte RJ; Lutterman JA; Van Hövell SW; Van der Gaag A
    J Biomed Mater Res; 2001 Jan; 54(1):69-75. PubMed ID: 11077404
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of subcutaneously-implanted glucose sensors for continuous glucose measurements in hyperglycemic pigs.
    Kvist PH; Bielecki M; Gerstenberg M; Rossmeisl C; Jensen HE; Rolin B; Hasselager E
    In Vivo; 2006; 20(2):195-203. PubMed ID: 16634519
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of a subcutaneous glucose sensor out to 3 months in a dog model.
    Gilligan BJ; Shults MC; Rhodes RK; Updike SJ
    Diabetes Care; 1994 Aug; 17(8):882-7. PubMed ID: 7956636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.