These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 15697408)
1. Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves. Bernus O; Wellner M; Pertsov AM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061913. PubMed ID: 15697408 [TBL] [Abstract][Full Text] [Related]
2. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure]. Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475 [TBL] [Abstract][Full Text] [Related]
3. Intra-myocardial cusp waves and their manifestation in optical mapping signals. Bernus O; Zemlin CW; Matiukas A; Hyatt CJ; Pertsov AM Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1564-7. PubMed ID: 17946905 [TBL] [Abstract][Full Text] [Related]
4. The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue. Steinberg BE; Glass L; Shrier A; Bub G Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1299-311. PubMed ID: 16608709 [TBL] [Abstract][Full Text] [Related]
5. Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model. Barbosa CR Phys Med Biol; 2003 Dec; 48(24):4151-64. PubMed ID: 14727758 [TBL] [Abstract][Full Text] [Related]
6. Computer simulation of cardiac propagation: effects of fiber rotation, intramural conductivity, and optical mapping. Ghazanfari A; Rodriguez MP; Vigmond E; Nygren A IEEE Trans Biomed Eng; 2014 Jul; 61(7):2041-8. PubMed ID: 24956621 [TBL] [Abstract][Full Text] [Related]
7. Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber. Cain JW; Tolkacheva EG; Schaeffer DG; Gauthier DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061906. PubMed ID: 15697401 [TBL] [Abstract][Full Text] [Related]
8. Asymptotic wave propagation in excitable media. Bernus O; Vigmond E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):010901. PubMed ID: 26274110 [TBL] [Abstract][Full Text] [Related]
9. Standing waves in the FitzHugh-Nagumo model of cardiac electrical activity. Dauby PC; Desaive T; Croisier H; Kolh P Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021908. PubMed ID: 16605363 [TBL] [Abstract][Full Text] [Related]
10. Epicardial fiber organization in swine right ventricle and its impact on propagation. Vetter FJ; Simons SB; Mironov S; Hyatt CJ; Pertsov AM Circ Res; 2005 Feb; 96(2):244-51. PubMed ID: 15618536 [TBL] [Abstract][Full Text] [Related]
11. Asymptotic properties of mathematical models of excitability. Biktasheva IV; Simitev RD; Suckley R; Biktashev VN Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1283-98. PubMed ID: 16608708 [TBL] [Abstract][Full Text] [Related]
12. Myocardial segment-specific model generation for simulating the electrical action of the heart. Hooks DA Biomed Eng Online; 2007 Jun; 6():21. PubMed ID: 17550624 [TBL] [Abstract][Full Text] [Related]
13. A collocation--Galerkin finite element model of cardiac action potential propagation. Rogers JM; McCulloch AD IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397 [TBL] [Abstract][Full Text] [Related]
14. The effect of the fiber curvature gradient on break excitation in cardiac tissue. Beaudoin DL; Roth BJ Pacing Clin Electrophysiol; 2006 May; 29(5):496-501. PubMed ID: 16689845 [TBL] [Abstract][Full Text] [Related]
15. Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes. Caldwell BJ; Trew ML; Sands GB; Hooks DA; LeGrice IJ; Smaill BH Circ Arrhythm Electrophysiol; 2009 Aug; 2(4):433-40. PubMed ID: 19808500 [TBL] [Abstract][Full Text] [Related]
16. Computer-simulated alternative modes of U-wave genesis. Depolli M; Avbelj V; Trobec R J Cardiovasc Electrophysiol; 2008 Jan; 19(1):84-9. PubMed ID: 17916148 [TBL] [Abstract][Full Text] [Related]
17. Finite volume stiffness matrix for solving anisotropic cardiac propagation in 2-D and 3-D unstructured meshes. Jacquemet V; Henriquez CS IEEE Trans Biomed Eng; 2005 Aug; 52(8):1490-2. PubMed ID: 16119246 [TBL] [Abstract][Full Text] [Related]
18. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Beaumont J; Davidenko N; Davidenko JM; Jalife J Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363 [TBL] [Abstract][Full Text] [Related]
19. Development of 3-D Intramural and Surface Potentials in the LV: Microstructural Basis of Preferential Transmural Conduction. Caldwell BJ; Trew ML; Legrice IJ; Smaill BH J Cardiovasc Electrophysiol; 2017 Jun; 28(6):692-701. PubMed ID: 28321943 [TBL] [Abstract][Full Text] [Related]
20. Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle. Cabo C; Pertsov AM; Baxter WT; Davidenko JM; Gray RA; Jalife J Circ Res; 1994 Dec; 75(6):1014-28. PubMed ID: 7525101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]