These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 15697419)

  • 1. Comment on "Origin of the excess wing and slow beta relaxation of glass formers: a unified picture of local orientational fluctuations".
    Ngai KL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):063501; discussion 063502. PubMed ID: 15697419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two secondary modes in decahydroisoquinoline: which one is the true Johari Goldstein process?
    Paluch M; Pawlus S; Hensel-Bielowka S; Kaminska E; Prevosto D; Capaccioli S; Rolla PA; Ngai KL
    J Chem Phys; 2005 Jun; 122(23):234506. PubMed ID: 16008461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of Caged Molecule Dynamics to JG β-Relaxation II: Polymers.
    Ngai KL; Capaccioli S; Prevosto D; Wang LM
    J Phys Chem B; 2015 Sep; 119(38):12502-18. PubMed ID: 26317769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopic understanding of the Johari-Goldstein β relaxation gained from nuclear γ-resonance time-domain-interferometry experiments.
    Ngai KL
    Phys Rev E; 2021 Jul; 104(1-2):015103. PubMed ID: 34412284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of the excess wing and slow beta relaxation of glass formers: a unified picture of local orientational fluctuations.
    Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021502. PubMed ID: 14995444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comment on "Study of dielectric relaxations of anhydrous trehalose and maltose glasses" [J. Chem. Phys. 134, 014508 (2011)].
    Kaminski K; Wlodarczyk P; Paluch M
    J Chem Phys; 2011 Oct; 135(16):167102. PubMed ID: 22047271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between the alpha-relaxation and Johari-Goldstein beta-relaxation of a component in binary miscible mixtures of glass-formers.
    Capaccioli S; Ngai KL
    J Phys Chem B; 2005 May; 109(19):9727-35. PubMed ID: 16852172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new secondary relaxation in the rigid and planar 1-methylindole: Evidence from binary mixture studies.
    Wang M; Li X; Guo Y; Wu T; Liu YD; Ngai KL; Wang LM
    J Chem Phys; 2016 Dec; 145(21):214501. PubMed ID: 28799385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of the genuine Johari-Goldstein secondary relaxation in m-fluoroaniline after suppression of hydrogen-bond-induced clusters by elevating temperature and pressure.
    Hensel-Bielówka S; Paluch M; Ngai KL
    J Chem Phys; 2005 Jul; 123(1):014502. PubMed ID: 16035850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure evolution of the excess wing in a type-B glass former.
    Casalini R; Roland CM
    Phys Rev Lett; 2003 Jul; 91(1):015702. PubMed ID: 12906552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting two different interpretations of the dynamics in binary glass forming mixtures.
    Valenti S; Capaccioli S; Ngai KL
    J Chem Phys; 2018 Feb; 148(5):054504. PubMed ID: 29421903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary and secondary relaxations in bis-5-hydroxypentylphthalate revisited.
    Ngai KL; Kamińska E; Sekuła M; Paluch M
    J Chem Phys; 2005 Nov; 123(20):204507. PubMed ID: 16351281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source of JG-Relaxation in the Entropy of Glass.
    Johari GP
    J Phys Chem B; 2019 Apr; 123(13):3010-3023. PubMed ID: 30807174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between the activation energy of the Johari-Goldstein beta relaxation and T(g) of glass formers.
    Ngai KL; Capaccioli S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031501. PubMed ID: 15089297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of secondary relaxation in glass-formers based on dynamic properties.
    Ngai KL; Paluch M
    J Chem Phys; 2004 Jan; 120(2):857-73. PubMed ID: 15267922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model.
    Ngai KL
    J Chem Phys; 2015 Mar; 142(11):114502. PubMed ID: 25796256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex dynamics of isotropic 4-cyano-4-n-pentylbiphenyl (5CB) in linear and nonlinear dielectric relaxation studies.
    Drozd-Rzoska A; Rzoska SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041701. PubMed ID: 12005840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between primary and secondary Johari-Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions.
    Mierzwa M; Pawlus S; Paluch M; Kaminska E; Ngai KL
    J Chem Phys; 2008 Jan; 128(4):044512. PubMed ID: 18247974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of the Johari-Goldstein process in rigid asymmetric molecules.
    Fragiadakis D; Roland CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042307. PubMed ID: 24229172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excess wing in the dielectric loss of glass formers: A johari-goldstein beta relaxation?
    Schneider U; Brand R; Lunkenheimer P; Loidl A
    Phys Rev Lett; 2000 Jun; 84(24):5560-3. PubMed ID: 10990994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.