These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15697459)

  • 1. Magnetic walls in the anisotropic XY-spin system in an oscillating magnetic field.
    Fujiwara N; Tutu H; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066132. PubMed ID: 15697459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic phase transitions in the anisotropic XY spin system in an oscillating magnetic field.
    Yasui T; Tutu H; Yamamoto M; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036123. PubMed ID: 12366200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ordering dynamics of one-dimensional Bloch wall system and domain size distribution function.
    Tutu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036112. PubMed ID: 12689137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field.
    Fujisaka H; Tutu H; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036109. PubMed ID: 11308711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ising-Bloch transition for the parametric Ginzburg-Landau equation with rapidly varying perturbations.
    Michaelis D; Abdullaev FKh; Darmanyan SA; Lederer F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056205. PubMed ID: 16089632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory for the spatiotemporal dynamics of domain walls close to a nonequilibrium Ising-Bloch transition.
    Gomila D; Colet P; Walgraef D
    Phys Rev Lett; 2015 Feb; 114(8):084101. PubMed ID: 25768763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unlocking Bloch-type chirality in ultrathin magnets through uniaxial strain.
    Chen G; N'Diaye AT; Kang SP; Kwon HY; Won C; Wu Y; Qiu ZQ; Schmid AK
    Nat Commun; 2015 Mar; 6():6598. PubMed ID: 25798953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain dynamics in the anisotropic Swift-Hohenberg equation.
    Ouchi K; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036210. PubMed ID: 15524615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics in the anisotropic XY model driven by dichotomous Markov noise.
    Ouchi K; Horita T; Tsukamoto N; Fujiwara N; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021139. PubMed ID: 18850818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic phase transition in a rotating external field.
    Fujiwara N; Kobayashi T; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026202. PubMed ID: 17358400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic phase transition in the kinetic spin-1 Blume-Capel model under a time-dependent oscillating external field.
    Keskin M; Canko O; Temizer U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036125. PubMed ID: 16241533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended order parameter and conjugate field for the dynamic phase transition in a Ginzburg-Landau mean-field model in an oscillating field.
    Robb DT; Ostrander A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022114. PubMed ID: 25353429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Externally driven collisions of domain walls in bistable systems near criticality.
    Janutka A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056608. PubMed ID: 21728683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Existence of a dynamic compensation temperature of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system in an oscillating field.
    Keskin M; Ertaş M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061140. PubMed ID: 20365151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field.
    Korniss G; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056127. PubMed ID: 12513576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new layered triangular antiferromagnet Li4FeSbO6: spin order, field-induced transitions and anomalous critical behavior.
    Zvereva EA; Savelieva OA; Titov YD; Evstigneeva MA; Nalbandyan VB; Kao CN; Lin JY; Presniakov IA; Sobolev AV; Ibragimov SA; Abdel-Hafiez M; Krupskaya Y; Jähne C; Tan G; Klingeler R; Büchner B; Vasiliev AN
    Dalton Trans; 2013 Feb; 42(5):1550-66. PubMed ID: 23138502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ising and Bloch domain walls in a two-dimensional parametrically driven Ginzburg-Landau equation model with nonlinearity management.
    Gaididei YB; Christiansen PL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026610. PubMed ID: 18850965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domain walls and ising-BLOCH transitions in parametrically driven systems.
    de Valcárcel GJ; Pérez-Arjona I; Roldán E
    Phys Rev Lett; 2002 Oct; 89(16):164101. PubMed ID: 12398725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of parametrically driven dark solitons. I. Néel-Néel and Bloch-Bloch interactions.
    Barashenkov IV; Woodford SR; Zemlyanaya EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026604. PubMed ID: 17358433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface phase diagram of the three-dimensional kinetic Ising model in an oscillating magnetic field.
    Tauscher K; Pleimling M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022121. PubMed ID: 25353436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.