These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 15697491)

  • 1. Investigation of short-range cedar pollen forecasting.
    Delaunay JJ; Seymour C; Fouillet V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066214. PubMed ID: 15697491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of cedar pollen time series: no evidence of low-dimensional chaotic behavior.
    Delaunay JJ; Konishi R; Seymour C
    Int J Biometeorol; 2006 Jan; 50(3):154-8. PubMed ID: 16208500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark.
    Skjøth CA; Sommer J; Stach A; Smith M; Brandt J
    Clin Exp Allergy; 2007 Aug; 37(8):1204-12. PubMed ID: 17651151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Forecast of the beginning day of Japanese cedar pollen release using variation pattern in air temperature].
    Kawashima S; Takahashi Y; Sahashi N
    Arerugi; 1998 Jul; 47(7):649-57. PubMed ID: 9780439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series.
    Sugihara G; May RM
    Nature; 1990 Apr; 344(6268):734-41. PubMed ID: 2330029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting pollen concentration by a two-step functional model.
    Valderrama MJ; Ocaña FA; Aguilera AM; Ocaña-Peinado FM
    Biometrics; 2010 Jun; 66(2):578-85. PubMed ID: 19645702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting daily ragweed pollen concentrations using Computational Intelligence techniques over two heavily polluted areas in Europe.
    Csépe Z; Makra L; Voukantsis D; Matyasovszky I; Tusnády G; Karatzas K; Thibaudon M
    Sci Total Environ; 2014 Apr; 476-477():542-52. PubMed ID: 24496027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of airborne Alnus pollen concentration by using ARIMA models.
    Rodríguez-Rajo FJ; Valencia-Barrera RM; Vega-Maray AM; Suárez FJ; Fernández-González D; Jato V
    Ann Agric Environ Med; 2006; 13(1):25-32. PubMed ID: 16841868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Prediction of atmospheric Japanese cedar pollen counts in Oita University Faculty of Medicine Complex].
    Watanabe T; Suenage S; Matsushita F; Suzuki M
    Arerugi; 2005 Nov; 54(11):1272-8. PubMed ID: 16407673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region.
    Rodríguez-Rajo FJ; Astray G; Ferreiro-Lage JA; Aira MJ; Jato-Rodriguez MV; Mejuto JC
    Neural Netw; 2010 Apr; 23(3):419-25. PubMed ID: 19604673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Description of the main Poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in Rzeszów and Ostrowiec Sw. (SE Poland).
    Kasprzyk I; Walanus A
    J Environ Monit; 2010 Apr; 12(4):906-16. PubMed ID: 20383372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelet-based fractal analysis of airborne pollen.
    Degaudenzi ME; Arizmendi CM
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):6569-73. PubMed ID: 11969643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a local least-squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction.
    Miranian A; Abdollahzade M
    IEEE Trans Neural Netw Learn Syst; 2013 Feb; 24(2):207-18. PubMed ID: 24808276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Prediction of the total Japanese cedar pollen counts based on male flower-setting conditions of standard trees].
    Yuta A; Ukai K; Sakakura Y; Tani H; Matsuda F; Yang TQ; Majima Y
    Arerugi; 2002 Jul; 51(7):577-82. PubMed ID: 12201172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid symplectic principal component analysis and central tendency measure method for detection of determinism in noisy time series with application to mechanomyography.
    Xie HB; Dokos S
    Chaos; 2013 Jun; 23(2):023131. PubMed ID: 23822496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting determinism in short time series, with an application to the analysis of a stationary EEG recording.
    Jeong J; Gore JC; Peterson BS
    Biol Cybern; 2002 May; 86(5):335-42. PubMed ID: 11984648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field.
    Stam CJ
    Clin Neurophysiol; 2005 Oct; 116(10):2266-301. PubMed ID: 16115797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.
    García-Mozo H; Yaezel L; Oteros J; Galán C
    Sci Total Environ; 2014 Mar; 473-474():103-9. PubMed ID: 24361781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal changes in antigen-specific T-helper clone sizes in patients with Japanese cedar pollinosis: a 2-year study.
    Horiguchi S; Tanaka Y; Uchida T; Chazono H; Ookawa T; Sakurai D; Okamoto Y
    Clin Exp Allergy; 2008 Mar; 38(3):405-12. PubMed ID: 18070160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ragweed pollen (Ambrosia artemisiifolia L.): prediction and prevention].
    Comtois P; Sherknies D
    Allerg Immunol (Paris); 1992 Jan; 24(1):22-6. PubMed ID: 1575898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.