BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 15697505)

  • 1. Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit.
    Shi Y; Zhao TS; Guo ZL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066310. PubMed ID: 15697505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice Boltzmann method for incompressible flows with large pressure gradients.
    Shi Y; Zhao TS; Guo ZL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026704. PubMed ID: 16605480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possibility of constructing a multispeed Bhatnagar-Gross-Krook thermal model of the lattice Boltzmann method.
    Watari M; Tsutahara M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016703. PubMed ID: 15324200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rayleigh-Bénard simulation using the gas-kinetic Bhatnagar-Gross-Krook scheme in the incompressible limit.
    Xu K; Lui SH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):464-70. PubMed ID: 11969784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional lattice Boltzmann model for compressible flows.
    Sun C; Hsu AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linearized lattice Boltzmann method for micro- and nanoscale flow and heat transfer.
    Shi Y; Yap YW; Sader JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013307. PubMed ID: 26274307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the kinetic model equations.
    Liu S; Zhong C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033306. PubMed ID: 24730966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comment on "Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method".
    Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):048301; discussion 048302. PubMed ID: 22181320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann method for linear oscillatory noncontinuum flows.
    Shi Y; Yap YW; Sader JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033305. PubMed ID: 24730965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscopic Simulation of the (2 + 1)-Dimensional Wave Equation with Nonlinear Damping and Source Terms Using the Lattice Boltzmann BGK Model.
    Li D; Lai H; Shi B
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filter-matrix lattice Boltzmann model for incompressible thermal flows.
    Zhuo C; Zhong C; Cao J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046703. PubMed ID: 22680602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices.
    Li Q; Luo KH; He YL; Gao YJ; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016710. PubMed ID: 22400704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow.
    McCracken ME; Abraham J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036701. PubMed ID: 15903627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Boltzmann method coupled with the Oldroyd-B constitutive model for a viscoelastic fluid.
    Su J; Ouyang J; Wang X; Yang B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053304. PubMed ID: 24329376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations.
    Yang X; Shi B; Chai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013309. PubMed ID: 25122412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal lattice Boltzmann equation for low Mach number flows: decoupling model.
    Guo Z; Zheng C; Shi B; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036704. PubMed ID: 17500823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional lattice Boltzmann model for electrodynamics.
    Mendoza M; Muñoz JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056708. PubMed ID: 21230620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simplified thermal lattice Boltzmann model for incompressible thermal flows.
    Peng Y; Shu C; Chew YT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026701. PubMed ID: 14525142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case.
    Guo Z; Xu K; Wang R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033305. PubMed ID: 24125383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.