These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 15697512)

  • 1. Modeling of microwave-sustained plasmas at atmospheric pressure with application to discharge contraction.
    Castaños Martinez E; Kabouzi Y; Makasheva K; Moisan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066405. PubMed ID: 15697512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of atmospheric-pressure plasma columns sustained by surface waves.
    Kabouzi Y; Graves DB; Castaños-Martínez E; Moisan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016402. PubMed ID: 17358263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure.
    Ridenti MA; de Amorim J; Dal Pino A; Guerra V; Petrov G
    Phys Rev E; 2018 Jan; 97(1-1):013201. PubMed ID: 29448313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of microwave-induced plasma in argon at atmospheric pressure.
    Baeva M; Bösel A; Ehlbeck J; Loffhagen D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056404. PubMed ID: 23004876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron heating in rf capacitive discharges at atmospheric-to-subatmospheric pressures.
    Park S; Choe W; Kim H
    Sci Rep; 2018 Jul; 8(1):10217. PubMed ID: 29976980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concept of power absorbed and lost per electron in surface-wave plasma columns and its contribution to the advanced understanding and modeling of microwave discharges.
    Moisan M; Ganachev IP; Nowakowska H
    Phys Rev E; 2022 Oct; 106(4-2):045202. PubMed ID: 36397503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of surface-wave discharges with cylindrical symmetry.
    Alves LL; Letout S; Boisse-Laporte C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016403. PubMed ID: 19257144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas heating in low-pressure microwave argon discharges.
    Palmero A; Cotrino J; Lao C; González-Elipe AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066401. PubMed ID: 12513406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic model of streamer coupling for the homogeneity of glowlike dielectric barrier discharges at near-atmospheric pressure.
    Li Q; Pu YK; Lieberman MA; Economou DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046405. PubMed ID: 21599314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of low-pressure barium-rare-gas discharges.
    Lister GG; Curry JJ; Lawler JE
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5576-83. PubMed ID: 11089116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on the characteristics of dielectric barrier discharge at atmospheric pressure by spectroscopic method].
    Li XC; Liu ZH; Jia PY; Li SF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):1939-41. PubMed ID: 18306767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial distribution of the plasma parameters in a radio-frequency driven negative ion source.
    Todorov D; Tarnev Kh; Paunska Ts; Lishev S; Shivarova A
    Rev Sci Instrum; 2014 Feb; 85(2):02B104. PubMed ID: 24593544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glow plasma trigger for electron cyclotron resonance ion sources.
    Vodopianov AV; Golubev SV; Izotov IV; Nikolaev AG; Oks EM; Savkin KP; Yushkov GY
    Rev Sci Instrum; 2010 Feb; 81(2):02A305. PubMed ID: 20192326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical characterization of an atmospheric pressure glow discharge used for analytical spectrometry.
    Martens T; Mihailova D; van Dijk J; Bogaerts A
    Anal Chem; 2009 Nov; 81(21):9096-108. PubMed ID: 19813757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic study of an expanded argon microwave (2.45 GHz) plasma at atmospheric pressure in a helium environment.
    García MC; Varo M; Martínez P
    Appl Spectrosc; 2009 Jul; 63(7):822-9. PubMed ID: 19589221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dust particle radial confinement in a dc glow discharge.
    Sukhinin GI; Fedoseev AV; Antipov SN; Petrov OF; Fortov VE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013101. PubMed ID: 23410440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the Spatial Nonuniformity of the Electric Field in Spectroscopic Diagnostic Methods of Atmospheric Electricity Phenomena.
    Malagón-Romero A; Pérez-Invernón FJ; Luque A; Gordillo-Vázquez FJ
    J Geophys Res Atmos; 2019 Nov; 124(22):12356-12370. PubMed ID: 32355584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges.
    Malik MA; Kolb JF; Sun Y; Schoenbach KH
    J Hazard Mater; 2011 Dec; 197():220-8. PubMed ID: 21982539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-pressure DC air plasmas. investigation of neutral and ion chemistry.
    Castillo M; Méndez I; Islyaikin AM; Herrero VJ; Tanarro I
    J Phys Chem A; 2005 Jul; 109(28):6255-63. PubMed ID: 16833966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure.
    Rubio SJ; Quintero MC; Rodero A
    J Hazard Mater; 2011 Feb; 186(1):820-6. PubMed ID: 21146292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.