These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 15697530)
1. Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals. Sang HY; Li ZY; Gu BY Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066611. PubMed ID: 15697530 [TBL] [Abstract][Full Text] [Related]
2. Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity. Devarapu GC; Foteinopoulou S Opt Express; 2012 Jun; 20(12):13040-54. PubMed ID: 22714331 [TBL] [Abstract][Full Text] [Related]
3. Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal. Gong Y; Liu X; Wang L; Lu H; Wang G Opt Express; 2011 May; 19(10):9759-69. PubMed ID: 21643233 [TBL] [Abstract][Full Text] [Related]
4. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies. Degirmenci E; Landais P Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592 [TBL] [Abstract][Full Text] [Related]
5. [The enhancement of electric field distribution in one-dimensional metallic-dielectric photonic crystals]. Deng LE; Wang YS; Wang DD; Xu Z; Fu M; He DW; Zhao AL; Tao YL Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jun; 30(6):1452-5. PubMed ID: 20707127 [TBL] [Abstract][Full Text] [Related]
6. Comment on 'Absorption in one-dimensional metallic-dielectric photonic crystals'. Wang DD J Phys Condens Matter; 2007 Jun; 19(24):248001. PubMed ID: 21694069 [TBL] [Abstract][Full Text] [Related]
7. Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate. Wang W; Cui Y; He Y; Hao Y; Lin Y; Tian X; Ji T; He S Opt Lett; 2014 Jan; 39(2):331-4. PubMed ID: 24562139 [TBL] [Abstract][Full Text] [Related]
8. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662 [TBL] [Abstract][Full Text] [Related]
9. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal. Hall AS; Faryad M; Barber GD; Liu L; Erten S; Mayer TS; Lakhtakia A; Mallouk TE ACS Nano; 2013 Jun; 7(6):4995-5007. PubMed ID: 23730702 [TBL] [Abstract][Full Text] [Related]
10. Photonic band structures solved by a plane-wave-based transfer-matrix method. Li ZY; Lin LL Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046607. PubMed ID: 12786509 [TBL] [Abstract][Full Text] [Related]
12. Visible light Laue diffraction from woodpile photonic crystals. Brüser B; Staude I; von Freymann G; Wegener M; Pietsch U Appl Opt; 2012 Oct; 51(28):6732-7. PubMed ID: 23033088 [TBL] [Abstract][Full Text] [Related]
13. Multiplication of photonic band gaps in one-dimensional photonic crystals by using hyperbolic metamaterial in IR range. Mohamed AG; Sabra W; Mehaney A; Aly AH; Elsayed HA Sci Rep; 2023 Jan; 13(1):324. PubMed ID: 36609630 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals. Tanaka Y; Kawamoto Y; Fujita M; Noda S Opt Express; 2013 Aug; 21(17):20111-8. PubMed ID: 24105557 [TBL] [Abstract][Full Text] [Related]
15. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs. Williamson IA; Mousavi SH; Wang Z Sci Rep; 2016 May; 6():25301. PubMed ID: 27143314 [TBL] [Abstract][Full Text] [Related]
16. Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method. Li JJ; Li ZY; Zhang DZ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056606. PubMed ID: 17677185 [TBL] [Abstract][Full Text] [Related]
17. Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals. Hossain MM; Chen G; Jia B; Wang XH; Gu M Opt Express; 2010 Apr; 18(9):9048-54. PubMed ID: 20588751 [TBL] [Abstract][Full Text] [Related]
18. Theoretical study of photonic band gaps in woodpile crystals. Gralak B; de Dood M; Tayeb G; Enoch S; Maystre D Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066601. PubMed ID: 16241362 [TBL] [Abstract][Full Text] [Related]
19. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals. Kushwaha MS; Martinez G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027601. PubMed ID: 15783461 [TBL] [Abstract][Full Text] [Related]