These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 15697643)

  • 1. Crossover from classical to quantum behavior of the Duffing oscillator through a pseudo-Lyapunov-exponent.
    Ota Y; Ohba I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):015201. PubMed ID: 15697643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaos in the quantum Duffing oscillator in the semiclassical regime under parametrized dissipation.
    Maris AD; Pokharel B; Seshachallam SG; Misplon MZR; Pattanayak AK
    Phys Rev E; 2021 Aug; 104(2-1):024206. PubMed ID: 34525518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing Complex Dynamics in the Classical and Semi-Classical Duffing Oscillator Using Ordinal Patterns Analysis.
    Trostel ML; Misplon MZR; Aragoneses A; Pattanayak AK
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonmonotonicity in the quantum-classical transition: chaos induced by quantum effects.
    Kapulkin A; Pattanayak AK
    Phys Rev Lett; 2008 Aug; 101(7):074101. PubMed ID: 18764537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New periodic-chaotic attractors in slow-fast Duffing system with periodic parametric excitation.
    Li X; Shen Y; Sun JQ; Yang S
    Sci Rep; 2019 Aug; 9(1):11185. PubMed ID: 31371736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaotic and pseudochaotic attractors of perturbed fractional oscillator.
    Zaslavsky GM; Stanislavsky AA; Edelman M
    Chaos; 2006 Mar; 16(1):013102. PubMed ID: 16599733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bistability and chaos at low levels of quanta.
    Gevorgyan TV; Shahinyan AR; Chew LY; Kryuchkyan GY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022910. PubMed ID: 24032904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameter scaling in the decoherent quantum-classical transition for chaotic systems.
    Pattanayak AK; Sundaram B; Greenbaum BD
    Phys Rev Lett; 2003 Jan; 90(1):014103. PubMed ID: 12570616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental effects in the quantum-classical transition for the delta-kicked harmonic oscillator.
    Carvalho AR; de Matos Filho RL; Davidovich L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026211. PubMed ID: 15447569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipative dynamics in a finite chaotic environment: Relationship between damping rate and Lyapunov exponent.
    Xavier JC; Strunz WT; Beims MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022908. PubMed ID: 26382477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter scaling in the decoherent quantum-classical transition for chaotic rf superconducting quantum interference devices.
    Mao T; Yu Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016212. PubMed ID: 20365451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breaking time for the quantum chaotic attractor.
    Iomin A; Zaslavsky GM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):027203. PubMed ID: 12636862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaos and dynamical complexity in the quantum to classical transition.
    Pokharel B; Misplon MZR; Lynn W; Duggins P; Hallman K; Anderson D; Kapulkin A; Pattanayak AK
    Sci Rep; 2018 Feb; 8(1):2108. PubMed ID: 29391499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System.
    Rozenbaum EB; Ganeshan S; Galitski V
    Phys Rev Lett; 2017 Feb; 118(8):086801. PubMed ID: 28282154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal spread of perturbations in a driven dissipative Duffing chain: An out-of-time-ordered correlator approach.
    Chatterjee AK; Kundu A; Kulkarni M
    Phys Rev E; 2020 Nov; 102(5-1):052103. PubMed ID: 33327101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Abraham-Lorentz force and the time evolution of a chaotic system: The case of charged classical and quantum Duffing oscillators.
    Krok KA; Durajski AP; Szczȩśniak R
    Chaos; 2022 Jul; 32(7):073130. PubMed ID: 35907742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum behavior of the Duffing oscillator at the dissipative phase transition.
    Chen QM; Fischer M; Nojiri Y; Renger M; Xie E; Partanen M; Pogorzalek S; Fedorov KG; Marx A; Deppe F; Gross R
    Nat Commun; 2023 May; 14(1):2896. PubMed ID: 37210421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoherence in a classically chaotic quantum system: entropy production and quantum-classical correspondence.
    Monteoliva D; Paz JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056238. PubMed ID: 11736085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum ratchets in dissipative chaotic systems.
    Carlo GG; Benenti G; Casati G; Shepelyansky DL
    Phys Rev Lett; 2005 Apr; 94(16):164101. PubMed ID: 15904228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dispersion and its exponential growth of a wave packet in chaotic systems.
    Junqing L; Fang L; YongZhong X; Wei Z; Heiss WD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):047203. PubMed ID: 12006075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.