These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 15697710)
1. Crisis-induced intermittency in two coupled chaotic maps: towards understanding chaotic itinerancy. Tanaka G; Sanjuán MA; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016219. PubMed ID: 15697710 [TBL] [Abstract][Full Text] [Related]
2. Intermittency induced by attractor-merging crisis in the Kuramoto-Sivashinsky equation. Rempel EL; Chian AC Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016203. PubMed ID: 15697694 [TBL] [Abstract][Full Text] [Related]
3. Catastrophic bifurcation from riddled to fractal basins. Lai YC; Andrade V Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056228. PubMed ID: 11736075 [TBL] [Abstract][Full Text] [Related]
4. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method. Liu X; Hong L; Jiang J Chaos; 2016 Aug; 26(8):084304. PubMed ID: 27586621 [TBL] [Abstract][Full Text] [Related]
5. Intermittent switching for three repulsively coupled oscillators. Ito K; Nishiura Y Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036224. PubMed ID: 18517502 [TBL] [Abstract][Full Text] [Related]
6. Desynchronization of chaos in coupled logistic maps. Maistrenko YL; Maistrenko VL; Popovych O; Mosekilde E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2817-30. PubMed ID: 11970087 [TBL] [Abstract][Full Text] [Related]
7. Clustering, chaos, and crisis in a bailout embedding map. Thyagu NN; Gupte N Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046218. PubMed ID: 17995093 [TBL] [Abstract][Full Text] [Related]
8. Bistable chaos without symmetry in generalized synchronization. Guan S; Lai CH; Wei GW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036209. PubMed ID: 15903548 [TBL] [Abstract][Full Text] [Related]
9. Symmetry restoring bifurcations and quasiperiodic chaos induced by a new intermittency in a vibro-impact system. Yue Y; Miao P; Xie J; Celso G Chaos; 2016 Nov; 26(11):113121. PubMed ID: 27908017 [TBL] [Abstract][Full Text] [Related]
10. Stochastic multiresonance in a chaotic map with fractal basins of attraction. Matyjaśkiewicz S; Krawiecki A; Holyst JA; Kacperski K; Ebeling W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026215. PubMed ID: 11308566 [TBL] [Abstract][Full Text] [Related]
11. Chaotic saddles and interior crises in a dissipative nontwist system. Simile Baroni R; de Carvalho RE; Caldas IL; Viana RL; Morrison PJ Phys Rev E; 2023 Feb; 107(2-1):024216. PubMed ID: 36932624 [TBL] [Abstract][Full Text] [Related]
12. Chaotic itinerancy based on attractors of one-dimensional maps. Sauer T Chaos; 2003 Sep; 13(3):947-52. PubMed ID: 12946187 [TBL] [Abstract][Full Text] [Related]
13. Crisis bifurcations in plane Poiseuille flow. Zammert S; Eckhardt B Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):041003. PubMed ID: 25974431 [TBL] [Abstract][Full Text] [Related]
14. Dynamics, multistability, and crisis analysis of a sine-circle nontwist map. Mugnaine M; Sales MR; Szezech JD; Viana RL Phys Rev E; 2022 Sep; 106(3-1):034203. PubMed ID: 36266788 [TBL] [Abstract][Full Text] [Related]
15. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation. Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089 [TBL] [Abstract][Full Text] [Related]
16. Chaotic itinerancy generated by coupling of Milnor attractors. Tsuda I; Umemura T Chaos; 2003 Sep; 13(3):937-46. PubMed ID: 12946186 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of impurities in a three-dimensional volume-preserving map. Das S; Gupte N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012906. PubMed ID: 25122359 [TBL] [Abstract][Full Text] [Related]
19. Mechanism for the riddling transition in coupled chaotic systems. Kim SY; Lim W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026217. PubMed ID: 11308568 [TBL] [Abstract][Full Text] [Related]
20. Chaotic transition in a three-coupled phase-locked loop system. Tsuruda H; Shirahama H; Fukushima K; Nagadome M; Inoue M Chaos; 2001 Jun; 11(2):410-416. PubMed ID: 12779476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]