These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15697711)

  • 1. Fine structure of distributions and central limit theorem in diffusive billiards.
    Sanders DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016220. PubMed ID: 15697711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring logarithmic corrections to normal diffusion in infinite-horizon billiards.
    Cristadoro G; Gilbert T; Lenci M; Sanders DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022106. PubMed ID: 25215688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of classical spin models with chaotic billiards.
    Suzuki H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052144. PubMed ID: 24329251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unstable evolution of pointwise trajectory solutions to chaotic maps.
    Fox RF
    Chaos; 1995 Dec; 5(4):619-633. PubMed ID: 12780218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Emergence of the Normal Distribution in Deterministic Chaotic Maps.
    Zanette DH; Samengo I
    Entropy (Basel); 2024 Jan; 26(1):. PubMed ID: 38248177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polygonal billiards and transport: diffusion and heat conduction.
    Alonso D; Ruiz A; De Vega I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066131. PubMed ID: 12513371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freezing transition and correlated motion in a quasi-two-dimensional colloid suspension.
    Zangi R; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061508. PubMed ID: 14754213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superdiffusion in a honeycomb billiard.
    Schmiedeberg M; Stark H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031113. PubMed ID: 16605506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closer look at time averages of the logistic map at the edge of chaos.
    Tirnakli U; Tsallis C; Beck C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056209. PubMed ID: 19518538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random walks with non-Gaussian step-size distributions and the folding of random polymer chains.
    Shaw RH; Tuszyński JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031102. PubMed ID: 12689050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-similar Gaussian processes for modeling anomalous diffusion.
    Lim SC; Muniandy SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021114. PubMed ID: 12241157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermi acceleration in chaotic shape-preserving billiards.
    Batistić B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022912. PubMed ID: 25353550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple non-chaotic map generating subdiffusive, diffusive, and superdiffusive dynamics.
    Salari L; Rondoni L; Giberti C; Klages R
    Chaos; 2015 Jul; 25(7):073113. PubMed ID: 26232964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal energy diffusion in a quivering billiard.
    Demers J; Jarzynski C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042911. PubMed ID: 26565308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A non-Gaussian model in polymeric network.
    Malacarne LC; Mendes RS; Lenzi EK; Picoli S; Dal Molin JP
    Eur Phys J E Soft Matter; 2006 Aug; 20(4):395-9. PubMed ID: 16953341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of normal and anomalous diffusion in polygonal billiard channels.
    Sanders DP; Larralde H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026205. PubMed ID: 16605427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probability densities for the sums of iterates of the sine-circle map in the vicinity of the quasiperiodic edge of chaos.
    Afsar O; Tirnakli U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046210. PubMed ID: 21230368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizons and free-path distributions in quasiperiodic Lorentz gases.
    Kraemer AS; Schmiedeberg M; Sanders DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052131. PubMed ID: 26651670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal-to-anomalous diffusion transition in disordered correlated potentials: from the central limit theorem to stable laws.
    Salgado-García R; Maldonado C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062143. PubMed ID: 24483421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaussian approximations for chemostat models in finite and infinite dimensions.
    Cloez B; Fritsch C
    J Math Biol; 2017 Oct; 75(4):805-843. PubMed ID: 28130571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.