These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 1569773)
1. Electrode-derived myocardial pH measurements reflect intracellular myocardial metabolism assessed by phosphorus 31-nuclear magnetic resonance spectroscopy during normothermic ischemia. Axford TC; Dearani JA; Khait I; Park WM; Patel MA; Doursounian M; Neuringer L; Valeri CR; Khuri SF J Thorac Cardiovasc Surg; 1992 May; 103(5):902-6; discussion 906-7. PubMed ID: 1569773 [TBL] [Abstract][Full Text] [Related]
2. Time course of ischemic alterations during normothermic and hypothermic arrest and its reflection by on-line monitoring of tissue pH. Lange R; Kloner RA; Zierler M; Carlson N; Seiler M; Khuri SF J Thorac Cardiovasc Surg; 1983 Sep; 86(3):418-34. PubMed ID: 6411999 [TBL] [Abstract][Full Text] [Related]
4. Effects of crossclamping the descending aorta on the high-energy phosphates of myocardium and skeletal muscle. A phosphorus 31-nuclear magnetic resonance study. Balschi JA; Henderson T; Bradley EL; Gelman S J Thorac Cardiovasc Surg; 1993 Aug; 106(2):346-56. PubMed ID: 8341075 [TBL] [Abstract][Full Text] [Related]
5. Recovery of left ventricular function after graded cardiac ischemia as predicted by myocardial P-31 nuclear magnetic resonance. Whitman GJ; Kieval RS; Seeholzer S; McDonald G; Simson MB; Harken AH Surgery; 1985 Apr; 97(4):428-35. PubMed ID: 3983818 [TBL] [Abstract][Full Text] [Related]
6. Antegrade and retrograde continuous warm blood cardioplegia: a 31P magnetic resonance study. Hoffenberg EF; Ye J; Sun J; Ghomeshi HR; Salerno TA; Deslauriers R Ann Thorac Surg; 1995 Nov; 60(5):1203-9. PubMed ID: 8526600 [TBL] [Abstract][Full Text] [Related]
7. Warm and cold blood cardioplegia. Comparison of myocardial function and metabolism using 31p magnetic resonance spectroscopy. Cannon MB; Vine AJ; Kantor HL; Lahorra JA; Nickell SA; Hahn C; Allyn JW; Teplick RS; Titus JS; Torchiana DF Circulation; 1994 Nov; 90(5 Pt 2):II328-38. PubMed ID: 7955275 [TBL] [Abstract][Full Text] [Related]
8. Effects of potassium cardioplegia on high-energy phosphate kinetics during circulatory arrest with deep hypothermia in the newborn piglet heart. Clark BJ; Woodford EJ; Malec EJ; Norwood CR; Pigott JD; Norwood WI J Thorac Cardiovasc Surg; 1991 Feb; 101(2):342-9. PubMed ID: 1992245 [TBL] [Abstract][Full Text] [Related]
9. Is adenosine 5'-triphosphate derangement or free-radical-mediated injury the major cause of ventricular dysfunction during reperfusion? Role of adenine nucleoside transport in myocardial reperfusion injury. Abd-Elfattah AS; Jessen ME; Hanan SA; Tuchy G; Wechsler AS Circulation; 1990 Nov; 82(5 Suppl):IV341-50. PubMed ID: 2225426 [TBL] [Abstract][Full Text] [Related]
10. Influence of the pH of cardioplegic solutions on intracellular pH, high-energy phosphates, and postarrest performance. Protective effects of acidotic, glutamate-containing cardioplegic perfusates. Bernard M; Menasche P; Canioni P; Fontanarava E; Grousset C; Piwnica A; Cozzone P J Thorac Cardiovasc Surg; 1985 Aug; 90(2):235-42. PubMed ID: 2410746 [TBL] [Abstract][Full Text] [Related]
11. Left ventricular contractility after hypothermic preservation: predictive value of phosphorus 31-nuclear magnetic resonance spectroscopy. Carteaux JP; Mertes PM; Pinelli G; Escanye JM; Walker P; Brunotte F; Jaboin Y; Robert J; Villemot JP J Heart Lung Transplant; 1994; 13(4):661-8. PubMed ID: 7947883 [TBL] [Abstract][Full Text] [Related]
12. Real-time monitoring of cardiac metabolism using biosensors shows myocardial protection during ischemia-reperfusion injury with glucose-insulin-potassium administration. Eiferman D; Perez-Tamayo RA; Abe K; Okum E; Higgins R Surgery; 2007 Aug; 142(2):150-5. PubMed ID: 17689679 [TBL] [Abstract][Full Text] [Related]
13. In vivo phosphorus-31 nuclear magnetic resonance study of the regional metabolic response to cardiac ischemia. Malloy CR; Matthews PM; Smith MB; Radda GK Adv Myocardiol; 1985; 6():461-4. PubMed ID: 3992043 [TBL] [Abstract][Full Text] [Related]
14. Effects of cromakalim and glibenclamide on myocardial high energy phosphates and intracellular pH during ischemia-reperfusion: 31P NMR studies. Docherty JC; Gunter HE; Kuzio B; Shoemaker L; Yang L; Deslauriers R J Mol Cell Cardiol; 1997 Jun; 29(6):1665-73. PubMed ID: 9220352 [TBL] [Abstract][Full Text] [Related]
15. Amiodarone pretreatment effects on ischemic isovolumic rat hearts: a P-31 nuclear magnetic resonance study of intracellular pH and high-energy phosphates contents evolutions. Vander Elst L; Goudemant JF; Mouton J; Chatelain P; Van Haverbeke Y; Muller RN J Cardiovasc Pharmacol; 1990 Mar; 15(3):377-85. PubMed ID: 1691360 [TBL] [Abstract][Full Text] [Related]
16. Close association between the reduction in myocardial energy metabolism and infarct size: dose-response assessment of cyclosporine. Niemann CU; Saeed M; Akbari H; Jacobsen W; Benet LZ; Christians U; Serkova N J Pharmacol Exp Ther; 2002 Sep; 302(3):1123-8. PubMed ID: 12183671 [TBL] [Abstract][Full Text] [Related]
17. [Ionic bases of cardioplegic solutions. II. Influence of the ionic composition of a cardioplegic solution on the metabolic and functional preservation of ischemic myocardium. Experimental evaluation with phosphorus 31 nuclear magnetic resonance and applications to cardiac surgery]. Menasche P; Groussett C; Piwnica A Arch Mal Coeur Vaiss; 1983 Dec; 76(12):1465-74. PubMed ID: 6322715 [TBL] [Abstract][Full Text] [Related]
18. Improvement of myocardial function by trifluoperazine, a calmodulin antagonist, after acute coronary artery occlusion and coronary revascularization. Otani H; Engelman RM; Rousou JA; Breyer RH; Clement R; Prasad R; Klar J; Das DK J Thorac Cardiovasc Surg; 1989 Feb; 97(2):267-74. PubMed ID: 2915562 [TBL] [Abstract][Full Text] [Related]