These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15697766)

  • 1. Simulation algorithms for the random-cluster model.
    Qian X; Deng Y; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016709. PubMed ID: 15697766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cluster dynamics for the random-cluster model.
    Deng Y; Qian X; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036707. PubMed ID: 19905246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Percolation of the site random-cluster model by Monte Carlo method.
    Wang S; Zhang W; Ding C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022127. PubMed ID: 26382364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Backbone exponents of the two-dimensional q-state Potts model: a Monte Carlo investigation.
    Deng Y; Blöte HW; Nienhuis B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026114. PubMed ID: 14995527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical speeding-up in the local dynamics of the random-cluster model.
    Deng Y; Garoni TM; Sokal AD
    Phys Rev Lett; 2007 Jun; 98(23):230602. PubMed ID: 17677892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dilute Potts model in two dimensions.
    Qian X; Deng Y; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056132. PubMed ID: 16383713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient simulation of the random-cluster model.
    Elçi EM; Weigel M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033303. PubMed ID: 24125381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical behavior of the Chayes-Machta-Swendsen-Wang dynamics.
    Deng Y; Garoni TM; Machta J; Ossola G; Polin M; Sokal AD
    Phys Rev Lett; 2007 Aug; 99(5):055701. PubMed ID: 17930769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo study of the triangular lattice gas with first- and second-neighbor exclusions.
    Zhang W; Deng Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031103. PubMed ID: 18850989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probability-changing cluster algorithm for Potts models.
    Tomita Y; Okabe Y
    Phys Rev Lett; 2001 Jan; 86(4):572-5. PubMed ID: 11177884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cluster algorithm for potts models with fixed spin densities.
    Bikker RP; Barkema GT
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5830-4. PubMed ID: 11089143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical dynamics of the two-dimensional random-bond Potts model with nonequilibrium Monte Carlo simulations.
    Fan S; Zhong F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011122. PubMed ID: 19257016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backbone and shortest-path exponents of the two-dimensional Q-state Potts model.
    Fang S; Ke D; Zhong W; Deng Y
    Phys Rev E; 2022 Apr; 105(4-1):044122. PubMed ID: 35590541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universality of the crossing probability for the Potts model for q=1, 2, 3, 4.
    Vasilyev OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026125. PubMed ID: 14525067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical dynamics of cluster algorithms in the random-bond Ising model.
    Kanbur U; Vatansever ZD
    Phys Rev E; 2024 Feb; 109(2-1):024140. PubMed ID: 38491603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of Potts models with real q and no critical slowing down.
    Gliozzi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016115. PubMed ID: 12241434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sweeny and Gliozzi dynamics for simulations of Potts models in the Fortuin-Kasteleyn representation.
    Wang JS; Kozan O; Swendsen RH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):057101. PubMed ID: 12513636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random-cluster multihistogram sampling for the q-state Potts model.
    Weigel M; Janke W; Hu CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036109. PubMed ID: 11909167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Path-integral Monte Carlo method for the local Z2 Berry phase.
    Motoyama Y; Todo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):021301. PubMed ID: 23496453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of cluster algorithms for the bond-diluted Ising model.
    Kole AH; Barkema GT; Fritz L
    Phys Rev E; 2022 Jan; 105(1-2):015313. PubMed ID: 35193318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.