These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15697766)

  • 21. Some geometric critical exponents for percolation and the random-cluster model.
    Deng Y; Zhang W; Garoni TM; Sokal AD; Sportiello A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):020102. PubMed ID: 20365513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combination of improved multibondic method and the Wang-Landau method.
    Yamaguchi C; Kawashima N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056710. PubMed ID: 12059753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Critical behavior of the two-dimensional random-bond Potts model: a short-time dynamic approach.
    Yin JQ; Zheng B; Trimper S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056134. PubMed ID: 15600719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Invaded cluster algorithm for a tricritical point in a diluted Potts model.
    Balog I; Uzelac K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011103. PubMed ID: 17677406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic Monte Carlo simulations of the three-dimensional random-bond Potts model.
    Yin JQ; Zheng B; Trimper S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036122. PubMed ID: 16241530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the dynamic and static critical exponents of the two-dimensional three-state Potts model using linearly varying temperature.
    Fan S; Zhong F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041141. PubMed ID: 17994970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conducting-angle-based percolation in the XY model.
    Wang Y; Guo W; Nienhuis B; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031117. PubMed ID: 20365707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geometric allocation approach to accelerating directed worm algorithm.
    Suwa H
    Phys Rev E; 2021 Jan; 103(1-1):013308. PubMed ID: 33601561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Random-bond Potts model in the large-q limit.
    Juhász R; Rieger H; Iglói F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056122. PubMed ID: 11736029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving the efficiency of Monte Carlo simulations of systems that undergo temperature-driven phase transitions.
    Velazquez L; Castro-Palacio JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013311. PubMed ID: 23944587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast flat-histogram method for generalized spin models.
    Reynal S; Diep HT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056710. PubMed ID: 16383788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cluster algorithm for Monte Carlo simulation at constant pressure.
    Almarza NG
    J Chem Phys; 2009 May; 130(18):184106. PubMed ID: 19449907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-dependent fiber bundles with local load sharing. II. General Weibull fibers.
    Phoenix SL; Newman WI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066115. PubMed ID: 20365239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Percolation effects in the Fortuin-Kasteleyn Ising model on the complete graph.
    Fang S; Zhou Z; Deng Y
    Phys Rev E; 2021 Jan; 103(1-1):012102. PubMed ID: 33601530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Percolation and critical O(n) loop configurations.
    Ding C; Deng Y; Guo W; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061118. PubMed ID: 19658484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geometric properties of two-dimensional critical and tricritical Potts models.
    Deng Y; Blöte HW; Nienhuis B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026123. PubMed ID: 14995536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q.
    Kim SY; Creswick RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066107. PubMed ID: 11415173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Statistics of geometric clusters in Potts model: statistical mechanics approach.
    Timonin PN
    Proc Math Phys Eng Sci; 2020 Aug; 476(2240):20200215. PubMed ID: 32922154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crossing bonds in the random-cluster model.
    Guo W; Deng Y; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061112. PubMed ID: 19658478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overcoming the slowing down of flat-histogram Monte Carlo simulations: cluster updates and optimized broad-histogram ensembles.
    Wu Y; Körner M; Colonna-Romano L; Trebst S; Gould H; Machta J; Troyer M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046704. PubMed ID: 16383564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.