These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15698174)

  • 1. Generalized pseudopotentials for higher partial wave scattering.
    Stock R; Silberfarb A; Bolda EL; Deutsch IH
    Phys Rev Lett; 2005 Jan; 94(2):023202. PubMed ID: 15698174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudopotential method for higher partial wave scattering.
    Idziaszek Z; Calarco T
    Phys Rev Lett; 2006 Jan; 96(1):013201. PubMed ID: 16486450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudopotential analog for zero-range photoassociation and Feshbach resonance.
    Moore MG
    Phys Rev Lett; 2006 Mar; 96(10):100401. PubMed ID: 16605711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computationally efficient exact pseudopotential method. I. Analytic reformulation of the Phillips-Kleinman theory.
    Smallwood CJ; Larsen RE; Glover WJ; Schwartz BJ
    J Chem Phys; 2006 Aug; 125(7):074102. PubMed ID: 16942317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits.
    Kedziora DJ; Ankiewicz A; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066601. PubMed ID: 23005231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of pseudopotentials for higher partial waves.
    Macek JH; Sternberg J
    Phys Rev Lett; 2006 Jul; 97(2):023201. PubMed ID: 16907439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-particle Green's function of interacting two electrons using analytic solutions for a three-body problem: comparison with exact Kohn-Sham system.
    Kosugi T; Matsushita YI
    J Phys Condens Matter; 2018 Oct; 30(43):435604. PubMed ID: 30229746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Going beyond the frozen core approximation: development of coordinate-dependent pseudopotentials and application to Na2(+).
    Kahros A; Schwartz BJ
    J Chem Phys; 2013 Feb; 138(5):054110. PubMed ID: 23406101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermi-bose transformation for the time-dependent Lieb-Liniger gas.
    Buljan H; Pezer R; Gasenzer T
    Phys Rev Lett; 2008 Feb; 100(8):080406. PubMed ID: 18352608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple approach for the bound-state energy spectrum of the generalized exponential-cosine Coulomb potential.
    Moulay M; Mansouri A; Houamer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):017701. PubMed ID: 12636641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution from BCS to BEC superfluidity in p-wave Fermi gases.
    Iskin M; Sá de Melo CA
    Phys Rev Lett; 2006 Feb; 96(4):040402. PubMed ID: 16486793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piecewise linear emulator of the nonlinear Schrödinger equation and the resulting analytic solutions for Bose-Einstein condensates.
    Theodorakis S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066701. PubMed ID: 16241374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photon-assisted confinement-induced resonances for ultracold atoms.
    Leyton V; Roghani M; Peano V; Thorwart M
    Phys Rev Lett; 2014 Jun; 112(23):233201. PubMed ID: 24972205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation.
    Wang LH; Porsezian K; He JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053202. PubMed ID: 23767650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eigenvalue cutoff in the cubic-quintic nonlinear Schrödinger equation.
    Prytula V; Vekslerchik V; Pérez-García VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):027601. PubMed ID: 18850979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse-scattering-theory approach to the exact n→∞ solutions of O(n) ϕ⁴ models on films and semi-infinite systems bounded by free surfaces.
    Rutkevich SB; Diehl HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062114. PubMed ID: 26172668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.
    Wen XY; Yang Y; Yan Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.
    Petrović NZ; Belić M; Zhong WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026604. PubMed ID: 21405921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Effective Range in the Bulk Viscosity of Resonantly Interacting s- and p-Wave Fermi Gases.
    Maki J; Zhang S
    Phys Rev Lett; 2020 Dec; 125(24):240402. PubMed ID: 33412059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.