These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15698174)

  • 21. Rogue wave solutions to the generalized nonlinear Schrödinger equation with variable coefficients.
    Zhong WP; Belić MR; Huang T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):065201. PubMed ID: 23848816
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breakdown of the pseudopotential approximation for magnetizabilities and electric multipole moments. II. The importance of gauge invariance for large-core semi-local pseudopotentials.
    Schwerdtfeger P; van Wüllen C; Cheeseman JR
    J Chem Phys; 2012 Jul; 137(1):014107. PubMed ID: 22779637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations.
    Sun Z; Yang W; Zhang DH
    Phys Chem Chem Phys; 2012 Feb; 14(6):1827-45. PubMed ID: 22234283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New types of solitary wave solutions for the higher order nonlinear Schrodinger equation.
    Li Z; Li L; Tian H; Zhou G
    Phys Rev Lett; 2000 May; 84(18):4096-9. PubMed ID: 10990619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Heisenberg's S matrix program to the angular scattering of the H + D2(v(i) = 0, j(i) = 0) → HD(v(f) = 3, j(f) = 0) + D reaction: piecewise S matrix elements using linear, quadratic, step-function, and top-hat parametrizations.
    Shan X; Connor JN
    J Phys Chem A; 2012 Nov; 116(46):11414-26. PubMed ID: 22876759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A general formula for the rate of resonant transfer of energy between two electric multipole moments of arbitrary order using molecular quantum electrodynamics.
    Salam A
    J Chem Phys; 2005 Jan; 122(4):44112. PubMed ID: 15740240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solving the Schrödinger equation of atoms and molecules without analytical integration based on the free iterative-complement-interaction wave function.
    Nakatsuji H; Nakashima H; Kurokawa Y; Ishikawa A
    Phys Rev Lett; 2007 Dec; 99(24):240402. PubMed ID: 18233425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generalized theory of resonance excitation by sound scattering from an elastic spherical shell in a nonviscous fluid.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1781-90. PubMed ID: 22899124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Universal analytical scattering form factor for shell-, core-shell, or homogeneous particles with continuously variable density profile shape.
    Foster T
    J Phys Chem B; 2011 Sep; 115(34):10207-17. PubMed ID: 21721530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple analytical particle and kinetic energy densities for a dilute fermionic gas in a d-dimensional harmonic trap.
    Brack M; van Zyl BP
    Phys Rev Lett; 2001 Feb; 86(8):1574-7. PubMed ID: 11290196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shell structure and pairing for interacting fermions in a trap.
    Heiselberg H; Mottelson B
    Phys Rev Lett; 2002 May; 88(19):190401. PubMed ID: 12005618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Micromotion-induced limit to atom-ion sympathetic cooling in Paul traps.
    Cetina M; Grier AT; Vuletić V
    Phys Rev Lett; 2012 Dec; 109(25):253201. PubMed ID: 23368457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analytic solutions of the rayleigh equation for linear density profiles.
    Cherfils C; Lafitte O
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2967-70. PubMed ID: 11088784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.
    Li YQ; Pan XY; Sahni V
    J Chem Phys; 2013 Sep; 139(11):114301. PubMed ID: 24070284
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unitary quantum three-body problem in a harmonic trap.
    Werner F; Castin Y
    Phys Rev Lett; 2006 Oct; 97(15):150401. PubMed ID: 17155300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of the aqueous electron: assessment of one-electron pseudopotential models in comparison to experimental data and time-dependent density functional theory.
    Herbert JM; Jacobson LD
    J Phys Chem A; 2011 Dec; 115(50):14470-83. PubMed ID: 22032635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feshbach resonance without a closed-channel bound state.
    Avishai Y; Band YB; Trippenbach M
    Phys Rev Lett; 2013 Oct; 111(15):155301. PubMed ID: 24160610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dilute Bose gas in two dimensions: density expansions and the Gross-Pitaevskii equation.
    Cherny AY; Shanenko AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):027105. PubMed ID: 11497746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling light scattering and polarization by spherical particles with radial anisotropy.
    Ni YX; Gao L; Miroshnichenko AE; Qiu CW
    Opt Express; 2013 Apr; 21(7):8091-100. PubMed ID: 23571899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time reversal for a single spherical scatterer.
    Chambers DH; Gautesen AK
    J Acoust Soc Am; 2001 Jun; 109(6):2616-24. PubMed ID: 11425102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.