BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15698235)

  • 1. Hierarchical chain model of spider capture silk elasticity.
    Zhou H; Zhang Y
    Phys Rev Lett; 2005 Jan; 94(2):028104. PubMed ID: 15698235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular nanosprings in spider capture-silk threads.
    Becker N; Oroudjev E; Mutz S; Cleveland JP; Hansma PK; Hayashi CY; Makarov DE; Hansma HG
    Nat Mater; 2003 Apr; 2(4):278-83. PubMed ID: 12690403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks.
    Hayashi CY; Lewis RV
    J Mol Biol; 1998 Feb; 275(5):773-84. PubMed ID: 9480768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spider silk proteome provides insight into the structural characterization of Nephila clavipes flagelliform spidroin.
    Dos Santos-Pinto JRA; Arcuri HA; Esteves FG; Palma MS; Lubec G
    Sci Rep; 2018 Oct; 8(1):14674. PubMed ID: 30279551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation.
    Vehoff T; Glisović A; Schollmeyer H; Zippelius A; Salditt T
    Biophys J; 2007 Dec; 93(12):4425-32. PubMed ID: 17766337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of superior spider silk: from nanostructure to mechanical properties.
    Du N; Liu XY; Narayanan J; Li L; Lim ML; Li D
    Biophys J; 2006 Dec; 91(12):4528-35. PubMed ID: 16950851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the mechanical properties of spider silk as a model nanostructured polymer.
    Porter D; Vollrath F; Shao Z
    Eur Phys J E Soft Matter; 2005 Feb; 16(2):199-206. PubMed ID: 15729511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spider silk aging: initial improvement in a high performance material followed by slow degradation.
    Agnarsson I; Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Oct; 309(8):494-504. PubMed ID: 18626974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spider silk as a load bearing biomaterial: tailoring mechanical properties via structural modifications.
    Brown CP; Rosei F; Traversa E; Licoccia S
    Nanoscale; 2011 Mar; 3(3):870-6. PubMed ID: 21212901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of recombinantly produced spider flagelliform silk domains.
    Heim M; Ackerschott CB; Scheibel T
    J Struct Biol; 2010 May; 170(2):420-5. PubMed ID: 20045468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The common house spider alters the material and mechanical properties of cobweb silk in response to different prey.
    Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Nov; 309(9):542-52. PubMed ID: 18651614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altering the mechanics of spider silk through methanol post-spin drawing.
    Brooks AE; Creager MS; Lewis RV
    Biomed Sci Instrum; 2005; 41():1-6. PubMed ID: 15850073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spider flagelliform silk: lessons in protein design, gene structure, and molecular evolution.
    Hayashi CY; Lewis RV
    Bioessays; 2001 Aug; 23(8):750-6. PubMed ID: 11494324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the elastic nature of spider silk in pursuit of the next designer fiber.
    Brooks AE; Lewis RV
    Biomed Sci Instrum; 2004; 40():232-7. PubMed ID: 15133963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy.
    Papadopoulos P; Sölter J; Kremer F
    Eur Phys J E Soft Matter; 2007 Oct; 24(2):193-9. PubMed ID: 17985073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.
    Hayashi CY; Blackledge TA; Lewis RV
    Mol Biol Evol; 2004 Oct; 21(10):1950-9. PubMed ID: 15240839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural view on spider silk proteins and their role in fiber assembly.
    Hagn F
    J Pept Sci; 2012 Jun; 18(6):357-65. PubMed ID: 22570231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2.
    Brooks AE; Stricker SM; Joshi SB; Kamerzell TJ; Middaugh CR; Lewis RV
    Biomacromolecules; 2008 Jun; 9(6):1506-10. PubMed ID: 18457450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of proline in the elastic mechanism of hydrated spider silks.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1948-57. PubMed ID: 18515725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.