These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 15698242)

  • 1. Evidence for quantized displacement in macroscopic nanomechanical oscillators.
    Gaidarzhy A; Zolfagharkhani G; Badzey RL; Mohanty P
    Phys Rev Lett; 2005 Jan; 94(3):030402. PubMed ID: 15698242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance.
    Badzey RL; Mohanty P
    Nature; 2005 Oct; 437(7061):995-8. PubMed ID: 16222295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "Evidence for quantized displacement in macroscopic nanomechanical oscillators".
    Schwab KC; Blencowe MP; Roukes ML; Cleland AN; Girvin SM; Milburn GJ; Ekinci KL
    Phys Rev Lett; 2005 Dec; 95(24):248901; author reply 248902. PubMed ID: 16384431
    [No Abstract]   [Full Text] [Related]  

  • 4. Observation and stabilization of photonic Fock states in a hot radio-frequency resonator.
    Gely MF; Kounalakis M; Dickel C; Dalle J; Vatré R; Baker B; Jenkins MD; Steele GA
    Science; 2019 Mar; 363(6431):1072-1075. PubMed ID: 30846596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronized oscillation in coupled nanomechanical oscillators.
    Shim SB; Imboden M; Mohanty P
    Science; 2007 Apr; 316(5821):95-9. PubMed ID: 17412955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.
    Bartsch ST; Lovera A; Grogg D; Ionescu AM
    ACS Nano; 2012 Jan; 6(1):256-64. PubMed ID: 22148851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical response of nanomechanical oscillators in immiscible viscous fluid for in vitro biomolecular recognition.
    Dorignac J; Kalinowski A; Erramilli S; Mohanty P
    Phys Rev Lett; 2006 May; 96(18):186105. PubMed ID: 16712378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomechanical oscillations in a single-C60 transistor.
    Park H; Park J; Lim AK; Anderson EH; Alivisatos AP; McEuen PL
    Nature; 2000 Sep; 407(6800):57-60. PubMed ID: 10993069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaching the quantum limit of a nanomechanical resonator.
    LaHaye MD; Buu O; Camarota B; Schwab KC
    Science; 2004 Apr; 304(5667):74-7. PubMed ID: 15064412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomechanical motion measured with an imprecision below that at the standard quantum limit.
    Teufel JD; Donner T; Castellanos-Beltran MA; Harlow JW; Lehnert KW
    Nat Nanotechnol; 2009 Dec; 4(12):820-3. PubMed ID: 19893515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single molecule detection of nanomechanical motion.
    Puller V; Lounis B; Pistolesi F
    Phys Rev Lett; 2013 Mar; 110(12):125501. PubMed ID: 25166818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-domain control of ultrahigh-frequency nanomechanical systems.
    Liu N; Giesen F; Belov M; Losby J; Moroz J; Fraser AE; McKinnon G; Clement TJ; Sauer V; Hiebert WK; Freeman MR
    Nat Nanotechnol; 2008 Dec; 3(12):715-9. PubMed ID: 19057589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collective synchronization in spatially extended systems of coupled oscillators with random frequencies.
    Hong H; Park H; Choi MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036217. PubMed ID: 16241558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically tunable macroscopic quantum tunneling in a graphene-based Josephson junction.
    Lee GH; Jeong D; Choi JH; Doh YJ; Lee HJ
    Phys Rev Lett; 2011 Sep; 107(14):146605. PubMed ID: 22107225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subharmonic resonant optical excitation of confined acoustic modes in a free-standing semiconductor membrane at GHz frequencies with a high-repetition-rate femtosecond laser.
    Bruchhausen A; Gebs R; Hudert F; Issenmann D; Klatt G; Bartels A; Schecker O; Waitz R; Erbe A; Scheer E; Huntzinger JR; Mlayah A; Dekorsy T
    Phys Rev Lett; 2011 Feb; 106(7):077401. PubMed ID: 21405540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiwalled carbon nanotubes as gigahertz oscillators.
    Zheng Q; Jiang Q
    Phys Rev Lett; 2002 Jan; 88(4):045503. PubMed ID: 11801136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical realization of the Glauber quantum oscillator.
    Gentilini S; Braidotti MC; Marcucci G; DelRe E; Conti C
    Sci Rep; 2015 Nov; 5():15816. PubMed ID: 26522653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinearity-induced synchronization enhancement in micromechanical oscillators.
    Antonio D; Czaplewski DA; Guest JR; López D; Arroyo SI; Zanette DH
    Phys Rev Lett; 2015 Jan; 114(3):034103. PubMed ID: 25659001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous and discontinuous phase transitions and partial synchronization in stochastic three-state oscillators.
    Wood K; Van den Broeck C; Kawai R; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041132. PubMed ID: 17994961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.