These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 15698309)

  • 1. Fluctuation conductivity of thin films and nanowires near a parallel-field-tuned superconducting quantum phase transition.
    Lopatin AV; Shah N; Vinokur VM
    Phys Rev Lett; 2005 Jan; 94(3):037003. PubMed ID: 15698309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum-fluctuation effects in the transport properties of ultrathin films of disordered superconductors above the paramagnetic limit.
    Khodas M; Levchenko A; Catelani G
    Phys Rev Lett; 2012 Jun; 108(25):257004. PubMed ID: 23004644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pairing fluctuation ac conductivity of disordered thin films.
    Petković A; Vinokur VM
    J Phys Condens Matter; 2013 Sep; 25(35):355701. PubMed ID: 23912063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave spectroscopy evidence of superconducting pairing in the magnetic-field-induced metallic state of InO(x) films at zero temperature.
    Liu W; Pan L; Wen J; Kim M; Sambandamurthy G; Armitage NP
    Phys Rev Lett; 2013 Aug; 111(6):067003. PubMed ID: 23971604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband method for precise microwave spectroscopy of superconducting thin films near the critical temperature.
    Kitano H; Ohashi T; Maeda A
    Rev Sci Instrum; 2008 Jul; 79(7):074701. PubMed ID: 18681723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excess conductivity and Berezinskii-Kosterlitz-Thouless transition in superconducting FeSe thin films.
    Schneider R; Zaitsev AG; Fuchs D; von Löhneysen H
    J Phys Condens Matter; 2014 Nov; 26(45):455701. PubMed ID: 25319094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localized superconductivity in the quantum-critical region of the disorder-driven superconductor-insulator transition in TiN thin films.
    Baturina TI; Mironov AY; Vinokur VM; Baklanov MR; Strunk C
    Phys Rev Lett; 2007 Dec; 99(25):257003. PubMed ID: 18233550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of the magnetic-field-tuned conductivity of disordered two-dimensional Mo43Ge57 and InOx superconducting films: evidence for a universal minimum superfluid response.
    Misra S; Urban L; Kim M; Sambandamurthy G; Yazdani A
    Phys Rev Lett; 2013 Jan; 110(3):037002. PubMed ID: 23373945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization and pair breaking parameter in superconducting molybdenum nitride thin films.
    Tsuneoka T; Makise K; Maeda S; Shinozaki B; Ichikawa F
    J Phys Condens Matter; 2017 Jan; 29(1):015701. PubMed ID: 27830668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5.
    Park T; Ronning F; Yuan HQ; Salamon MB; Movshovich R; Sarrao JL; Thompson JD
    Nature; 2006 Mar; 440(7080):65-8. PubMed ID: 16511490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum criticality at the superconductor-insulator transition revealed by specific heat measurements.
    Poran S; Nguyen-Duc T; Auerbach A; Dupuis N; Frydman A; Bourgeois O
    Nat Commun; 2017 Feb; 8():14464. PubMed ID: 28224994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonperturbative microscopic theory of superconducting fluctuations near a quantum critical point.
    Galitski V
    Phys Rev Lett; 2008 Mar; 100(12):127001. PubMed ID: 18517902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superinsulator and quantum synchronization.
    Vinokur VM; Baturina TI; Fistul MV; Mironov AY; Baklanov MR; Strunk C
    Nature; 2008 Apr; 452(7187):613-5. PubMed ID: 18385735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Criticality inside the Anomalous Metallic State of a Disordered Superconducting Thin Film.
    Ienaga K; Hayashi T; Tamoto Y; Kaneko S; Okuma S
    Phys Rev Lett; 2020 Dec; 125(25):257001. PubMed ID: 33416373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional superconducting nature of Bi
    Zhang L; Kang C; Liu C; Wang K; Zhang W
    RSC Adv; 2023 Aug; 13(37):25797-25803. PubMed ID: 37664203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistive phase transition of the superconducting Si(111)-(7×3)-In surface.
    Uchihashi T; Mishra P; Nakayama T
    Nanoscale Res Lett; 2013 Apr; 8(1):167. PubMed ID: 23578253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Griffiths singularity of superconductor-metal transition in Ga thin films.
    Xing Y; Zhang HM; Fu HL; Liu H; Sun Y; Peng JP; Wang F; Lin X; Ma XC; Xue QK; Wang J; Xie XC
    Science; 2015 Oct; 350(6260):542-5. PubMed ID: 26472763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field-tuned superconductor-insulator transitions and Hall resistance in thin polycrystalline MoN films.
    Makise K; Ichikawa F; Asano T; Shinozaki B
    J Phys Condens Matter; 2018 Feb; 30(6):065402. PubMed ID: 29186006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superconducting nanowire quantum interference device based on Nb ultrathin films deposited on self-assembled porous Si templates.
    Cirillo C; Prischepa SL; Trezza M; Bondarenko VP; Attanasio C
    Nanotechnology; 2014 Oct; 25(42):425205. PubMed ID: 25277511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible Fulde-Ferrell-Larkin-Ovchinnikov superconducting state in CeCoIn5.
    Bianchi A; Movshovich R; Capan C; Pagliuso PG; Sarrao JL
    Phys Rev Lett; 2003 Oct; 91(18):187004. PubMed ID: 14611309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.