These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 15698469)

  • 1. Proteins with two SUMO-like domains in chromatin-associated complexes: the RENi (Rad60-Esc2-NIP45) family.
    Novatchkova M; Bachmair A; Eisenhaber B; Eisenhaber F
    BMC Bioinformatics; 2005 Feb; 6():22. PubMed ID: 15698469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45.
    Sekiyama N; Arita K; Ikeda Y; Hashiguchi K; Ariyoshi M; Tochio H; Saitoh H; Shirakawa M
    Proteins; 2010 May; 78(6):1491-502. PubMed ID: 20077568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SUMO-targeted ubiquitin ligases in genome stability.
    Prudden J; Pebernard S; Raffa G; Slavin DA; Perry JJ; Tainer JA; McGowan CH; Boddy MN
    EMBO J; 2007 Sep; 26(18):4089-101. PubMed ID: 17762865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway.
    Duda DM; van Waardenburg RC; Borg LA; McGarity S; Nourse A; Waddell MB; Bjornsti MA; Schulman BA
    J Mol Biol; 2007 Jun; 369(3):619-30. PubMed ID: 17475278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription.
    Ling Y; Sankpal UT; Robertson AK; McNally JG; Karpova T; Robertson KD
    Nucleic Acids Res; 2004; 32(2):598-610. PubMed ID: 14752048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of the SUMO-like domains of Schizosaccharomyces pombe Rad60.
    Boyd LK; Mercer B; Thompson D; Main E; Watts FZ
    PLoS One; 2010 Sep; 5(9):e13009. PubMed ID: 20885950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors.
    Lin DY; Huang YS; Jeng JC; Kuo HY; Chang CC; Chao TT; Ho CC; Chen YC; Lin TP; Fang HI; Hung CC; Suen CS; Hwang MJ; Chang KS; Maul GG; Shih HM
    Mol Cell; 2006 Nov; 24(3):341-54. PubMed ID: 17081986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation.
    Tatham MH; Kim S; Yu B; Jaffray E; Song J; Zheng J; Rodriguez MS; Hay RT; Chen Y
    Biochemistry; 2003 Aug; 42(33):9959-69. PubMed ID: 12924945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone deacetylases: complex transducers of nuclear signals.
    Johnson CA; Turner BM
    Semin Cell Dev Biol; 1999 Apr; 10(2):179-88. PubMed ID: 10441071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SUMO-binding motifs mediate the Rad60-dependent response to replicative stress and self-association.
    Raffa GD; Wohlschlegel J; Yates JR; Boddy MN
    J Biol Chem; 2006 Sep; 281(38):27973-81. PubMed ID: 16880212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mimicry of SUMO promotes DNA repair.
    Prudden J; Perry JJ; Arvai AS; Tainer JA; Boddy MN
    Nat Struct Mol Biol; 2009 May; 16(5):509-16. PubMed ID: 19363481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein modification by SUMO.
    Johnson ES
    Annu Rev Biochem; 2004; 73():355-82. PubMed ID: 15189146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins.
    Sun H; Leverson JD; Hunter T
    EMBO J; 2007 Sep; 26(18):4102-12. PubMed ID: 17762864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of human SUMO-3 C47S and its binding surface for Ubc9.
    Ding H; Xu Y; Chen Q; Dai H; Tang Y; Wu J; Shi Y
    Biochemistry; 2005 Mar; 44(8):2790-9. PubMed ID: 15723523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment.
    Mohan RD; Rao A; Gagliardi J; Tini M
    Mol Cell Biol; 2007 Jan; 27(1):229-43. PubMed ID: 17060459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SUMO association with repressor complexes, emerging routes for transcriptional control.
    Garcia-Dominguez M; Reyes JC
    Biochim Biophys Acta; 2009; 1789(6-8):451-9. PubMed ID: 19616654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of a human cell line stably overexpressing mouse Nip45 and characterization of Nip45 subcellular localization.
    Hashiguchi K; Ozaki M; Kuraoka I; Saitoh H
    Biochem Biophys Res Commun; 2013 Jan; 430(1):72-7. PubMed ID: 23159618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1.
    Taplick J; Kurtev V; Kroboth K; Posch M; Lechner T; Seiser C
    J Mol Biol; 2001 Apr; 308(1):27-38. PubMed ID: 11302704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities.
    Aravind L; Iyer LM
    Genome Biol; 2002 Jul; 3(8):RESEARCH0039. PubMed ID: 12186646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P300 transcriptional repression is mediated by SUMO modification.
    Girdwood D; Bumpass D; Vaughan OA; Thain A; Anderson LA; Snowden AW; Garcia-Wilson E; Perkins ND; Hay RT
    Mol Cell; 2003 Apr; 11(4):1043-54. PubMed ID: 12718889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.