These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 15698642)

  • 21. Enrichment of anaerobic polychlorinated biphenyl dechlorinators from sediment with iron as a hydrogen source.
    Rysavy JP; Yan T; Novak PJ
    Water Res; 2005 Feb; 39(4):569-78. PubMed ID: 15707629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reductive dehalogenation and conversion of 2-chlorophenol to 3-chlorobenzoate in a methanogenic sediment community: implications for predicting the environmental fate of chlorinated pollutants.
    Becker JG; Stahl DA; Rittmann BE
    Appl Environ Microbiol; 1999 Nov; 65(11):5169-72. PubMed ID: 10543840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries.
    Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ
    Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biotransformation of p-toluic acid in anoxic estuarine sediments under a CO2 or N2/H2 atmosphere.
    Kuo CE; Chi WC; Liu SM
    Chemosphere; 2001 Nov; 45(6-7):835-42. PubMed ID: 11695603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reductive transformation of dieldrin under anaerobic sediment culture.
    Chiu TC; Yen JH; Hsieh YN; Wang YS
    Chemosphere; 2005 Sep; 60(9):1182-9. PubMed ID: 16018887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclohexane carboxylate and benzoate formation from crotonate in Syntrophus aciditrophicus.
    Mouttaki H; Nanny MA; McInerney MJ
    Appl Environ Microbiol; 2007 Feb; 73(3):930-8. PubMed ID: 17158621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradation of mono-alkyl phthalate esters in natural sediments.
    Otton SV; Sura S; Blair J; Ikonomou MG; Gobas FA
    Chemosphere; 2008 May; 71(11):2011-6. PubMed ID: 18331756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of enrichment with phthalate on polycyclic aromatic hydrocarbon biodegradation in contaminated soil.
    Singleton DR; Richardson SD; Aitken MD
    Biodegradation; 2008 Jul; 19(4):577-87. PubMed ID: 17990065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of sediment bacteria involved in selenium reduction.
    Siddique T; Zhang Y; Okeke BC; Frankenberger WT
    Bioresour Technol; 2006 May; 97(8):1041-9. PubMed ID: 16324840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of phenol under meso- and thermophilic, anaerobic conditions.
    Karlsson A; Ejlertsson J; Nezirevic D; Svensson BH
    Anaerobe; 1999 Feb; 5(1):25-35. PubMed ID: 16887659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of nonylphenol by anaerobic microorganisms from river sediment.
    Chang BV; Yu CH; Yuan SY
    Chemosphere; 2004 Apr; 55(4):493-500. PubMed ID: 15006502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anaerobic biotransformation of estrogens.
    Czajka CP; Londry KL
    Sci Total Environ; 2006 Aug; 367(2-3):932-41. PubMed ID: 16616321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens.
    Qiu YL; Sekiguchi Y; Hanada S; Imachi H; Tseng IC; Cheng SS; Ohashi A; Harada H; Kamagata Y
    Arch Microbiol; 2006 Apr; 185(3):172-82. PubMed ID: 16404568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benzoate fermentation by the anaerobic bacterium Syntrophus aciditrophicus in the absence of hydrogen-using microorganisms.
    Elshahed MS; McInerney MJ
    Appl Environ Microbiol; 2001 Dec; 67(12):5520-5. PubMed ID: 11722901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic redox cycling of iron by freshwater sediment microorganisms.
    Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE
    Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental evidence for in situ natural attenuation of 2,4- and 2,6-dinitrotoluene in marine sediment.
    Yang H; Halasz A; Zhao JS; Monteil-Rivera F; Hawari J
    Chemosphere; 2008 Jan; 70(5):791-9. PubMed ID: 17765284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP) degradation in a soil microcosm.
    Chao WL; Cheng CY
    Chemosphere; 2007 Mar; 67(3):482-8. PubMed ID: 17092544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioavailability and biotransformation of sediment-associated pyrethroid insecticides in Lumbriculus variegatus.
    You J; Brennan A; Lydy MJ
    Chemosphere; 2009 Jun; 75(11):1477-82. PubMed ID: 19278716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China.
    Wang F; Xia X; Sha Y
    J Hazard Mater; 2008 Jun; 154(1-3):317-24. PubMed ID: 18037235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioavailability of phthalate congeners to earthworms (Eisenia fetida) in artificially contaminated soils.
    Hu XY; Wen B; Zhang S; Shan XQ
    Ecotoxicol Environ Saf; 2005 Sep; 62(1):26-34. PubMed ID: 15978288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.